Утеплители Изоляция Блоки

Армянская эвм 60 х годов. История развития вычислительной техники в армянской сср. Что значит «Ранние ЭВМ»

Оганджанян С.Б.

В начале пятидесятых годов в СССР бурными темпами стала развиваться электроника и вычислительная техника (ВТ). Начиная осознавать перспективы развития ВТ руководство СССР в долгосрочной программе предусмотрело создание базовых регионов, в которых планировалось создание крупных производственных и научных объектов в этой области исходя из научного потенциала кадров, менталитета и др. Армения явилась одним из немногочисленных регионов СССР, который был наиболее подходящим для реализации этой программы. Научные исследования и научно-технические разработки в области информатики и ВТ в Армении начались в 1950-е годы, и именно в силу этого по инициативе академиков В.А. Амбарцумяна, А.Л. Шагиняна и А.Г. Иосифьяна СМ Арм. ССР выступил с предложением в СМ СССР о создании в составе Министерства приборостроения и средств автоматизации СССР Ереванского научно-исследовательского института математических машин (ЕрНИИММ), который был открыт в июне 1956 года. Через год, в 1957, по инициативе АН Арм. ССР и при поддержке СМ Арм. ССР - вычислительный центр АН и Госуниверситета (ныне Институт информатики и проблем автоматизации НАН РА).

Ведущую роль в создании института сыграл молодой ученый, академик С. Мергелян - первый руководитель ЕрНИИММ. До сих пор в Армении, в народе, «Институт Мергеляна» служит синонимом ЕрНИИММ.

Сергей Никитович Мергелян (19.5. 1928, Симферополь-20.8. 2008, Лос-Анджелес), математик, член-корреспондент АН СССР (1953), академик АН Арм. ССР (1956). Самый молодой доктор наук в истории СССР (степень присуждена при защите кандидатской диссертации в возрасте 20 лет в Математическом институте им. В.А. Стеклова АН СССР), самый молодой член-корреспондент АН СССР (присвоено в возрасте 24 лет). Лауреат Государственной премии СССР (1952), кавалер ордена Святого Месропа Маштоца (2008) - высший орден Республики Армения.

Начальной задачей поставленной перед ЕрНИИММ было создание средств электронной ВТ. Исходя из профиля института, там были созданы все структуры для разработки и внедрения ВТ, начиная с технического задания и кончая внедрением в производство и эксплуатацией: конструкторские отделы, отделения систем автоматического проектирования, отделения математического обеспечения и тестирования, подразделения системного анализа и проектирования, электронного проектирования, лаборатория типовых испытаний узлов и устройств ВТ и подразделения разработки документации. С целью отработки устройств и ЭВМ был создан опытный завод при ЕрНИИММ, который обеспечивал изготовление опытных образцов, отработку документации и технологических решений до передачи изделия в серийное производство (т.е. создание замкнутого цикла - «разработка - внедрение», школа Иосифьяна). Подобная организация цикла позволила добиться высокой эффективности при взаимодействии со многими НИИ и заводами в рамках установленной кооперации. С этой же целью на базе ЕрНИИММ в начале 1960-х годов в Ереване был создан завод «Электрон», который выполнял промышленную сборку ЭВМ разработанных в институте, а также в других НИИ Советского Союза.

В начале 1960-ых годов сформировались основные направления работ института: это, по классификации того времени, были малые и средние ЭВМ и в конце 60-ых годов - специальные вычислительные комплексы и автоматизированные системы управления специального назначения. Совместно с основными направлениями, для обеспечения их продвижения, развивались подразделения электронной и конструкторской разработки, программного и тестового обеспечения, автоматизации разработки, электропитания и систем памяти, технологического обеспечения и др.

В 1956-58 в ЕрНИИММ по документации московского Всесоюзного НИИ электромеханики (ныне ФГУП «НПП ВНИИЭМ с заводом имени А.Г. Иосифьяна») была осуществлена модернизация ЭВМ М-3 - внедрение новой оперативной памяти (ОП) на ферритовых кольцах, что позволило увеличить её быстродействие с 30 оп/с до 3000 оп/с. Усовершенствованный образец М-3 после наладки (Б. Мелик-Шахназаров, В. Русаневич и др.) в 1958 г. был передан в Институт энергетики им. Кржижановского АН СССР для решения задач в области энергетики. Эта работа явилась первым шагом ЕрНИИММ в области ВТ.

Одной из первых разработок, выполненных ЕрНИИММ, были ЭВМ первого поколения - на электронных лампах - «Арагац» (1958-1960 гг., гл. конструктор - Б. Хайкин), «Раздан-1» (гл. конструктор. Е. Брусиловский) и «Ереван» (гл. конструктор М. Айвазян).

В 1958-61 гг. в институте спроектировали универсальную ЭВМ «Раздан-2» (гл. конструктор. Е. Брусиловский) - первую в СССР ЭВМ полностью собранную на полупроводниковых приборах. Для стандартизации элементов проектируемых машин в институте создали комплекс элементов «Магний» (гл. конструктор В. Карапетян) и конструкторско-технологическую базу для ЭВМ новых поколений, что позволило создать универсальную ЭВМ «Раздан-3» (1965, гл. конструктор В. Русаневич), с быстродействием 15-20 тыс. оп/с и объёмом ОП 32 Кбайт - одна из первых машин, экспортируемых из СССР. Производство этой машины организовали на заводе «Электрон».

В 1957 г. начались и к 1960 г. успешно закончились работы по проектированию специализированных машин, имеющих оборонное значение, таких, как СЭВМ «Волна» (гл. конструктор Г. Белкин) и СЭВМ «Корунд» (гл. конструктор О. Цюпа). Тогда же были созданы ЭВМ «Каназ», управляющая технологическим процессом Канакерского алюминиевого завода (гл. конструктор А. Сагоян), и ЭВМ «Перепись», обрабатывающая результаты переписи населения СССР (гл. конструктор В. Русаневич).

В 1963-77 гг. директором института был назначен Ф. Саркисян, с именем которого, безусловно, связаны расцвет и становление ЕрНИИММ, его традиций, создание мощного сплава опытных наставников и молодых ученых. По его инициативе ставились и решались крупные научно-технические, производственные и организационные задачи. В институте появились новые направления, началось создание малых универсальных машин семейства «Наири». ЕрНИИММ принял участие в государственной программе создания Единой системы универсальных ЭВМ (ЕС ЭВМ) и автоматизированной системы управления (АСУ) особого назначения, необходимой для нужд Министерства обороны СССР. Был взят курс на повышение качества проектирования и увеличение мощности.

Фадей Тачатович Саркисян (18.9. 1923, Ереван - 10.1. 2010, Ереван) советский и армянский учёный, государственный деятель, генерал-майор, академик АН Армянской ССР (1977). В 1940-1942 учился в Ереванском политехническом институте; в 1942-1946 окончил Ленинградскую Военную электротехническую академию связи имени С. М. Буденного; в 1946-1963 являлся сотрудником Научно-технического комитета Главного ракетно-артиллерийского управления Министерства обороны СССР. В 1952 году участвовал в качестве советника в боевых действиях по ПВО КНР, награжден двумя медалями КНР. В 1963-77 - директор ЕрНИИММ, главный конструктор специальных больших автоматизированных систем управления. Председатель Совета Министров Армянской ССР (1977-89); президент Национальной академии наук Армении (1993-2006), иностранный член РАН (2003). Лауреат Государственных премий СССР (1971, 1981) и Украинской ССР (1986). Награжден орденами Трудового Красного Знамени (1965, 1976, 1986), Октябрьской революции (1971), Ленина (1981).

В 1962 г. в ЕрНИИММ начали разработку первых малых машин семейства «Наири», особенностью которых являлась организация управления и автоматизированного программирования по микропрограммным принципам, что дало возможность существенно упростить обслуживание машины, уменьшить габариты, увеличить надежность и сделать ее доступной для специалиста любой области науки и техники. Были созданы: Наири 1, 2, 3, 3-1 (1963-1971 гг., гл. конструктор - Г. Овсепян; Госпремия СССР, 1971 г.); в 1972-76 гг. ЭВМ Наири 3-2, Наири 3-3 (гл. конструктор - А. Геолецян; Госпремия Украинской ССР в составе авторского коллектива), которые были первыми в СССР проблемно-ориентированными ЭВМ коллективного пользования; ЭВМ Наири 4 АРМ/Наири 4 и Наири 4-1 (1974-1981 гг., гл. конструктор - Г. Оганян), предназначенные для автоматического управления типового производства, обеспечивали обработку графической и текстовой информации и совместимость с такими широко распространенными семействами ЭВМ, как СМ ЭВМ (СССР) и PDP (США); в 1980- 1981 гг. ЭВМ Наири 4В и Наири 4В/С (гл. конструкторы - В. Карапетян, А. Сагоян; Госпремия СССР в составе авторского коллектива, 1987 г.) предназначенные для использования в системах автоматического управления и вспомогательные ЭВМ в составе сложных систем для обороны, так и в народном хозяйстве; имели полную совместимость с семействами СМ ЭВМ и PDP. Разработчики семейства ЭВМ «Наири» получили 44 авторских свидетельства. Машины выставлялись на выставках СССР и в 19 зарубежных странах.

Впервые в стране в ЕрНИИММ был спроектирован и создан вычислительный комплекс «Маршрут-1», предназначенный для автоматизации билетно-кассовых операций Московского железнодорожного узла (гл. конструктор - А. Кучукян; Госпремия Арм. ССР, 1974 г.). Комплекс состоял из трех машин «Маршрут-1», способных работать как в сопряженном, так и в одиночном режимах, с оперативной памятью на магнитных дисках, долговременным запоминающим устройством емкостью 216 Кбайт. Впервые в стране был спроектирован и создан вычислительный комплекс, учитывающий требования, предъявляемые к системам бронирования мест на железнодорожном транспорте. Для комплекса, включая все устройства и узлы, был разработан пакет диагностических программ. Это дало возможность выявлять и исправлять многие характерные ошибки, что существенно облегчало обслуживание вычислительного комплекса в режиме реального времени. Вычислительный комплекс «Маршрут-1» дал возможность работать с 126 линиями связи. В 1971 г. комплекс пущен в эксплуатацию на Московском железнодорожном узле. Комплекс «Маршрут-1б» два раза (в 1973 и 1976 гг.) выставлялся на ВДНХ СССР, защищен несколькими авторскими свидетельствами. Вторая очередь системы бронирования билетов была построена с помощью вычислительных комплексов на основе ЕС ЭВМ, разработанных в институте. Систему установили на больших железнодорожных узлах СССР, создав единую сеть.

В 1977-1989 гг. велись работы по созданию ЭВМ «Ковер» (гл. конструктор В. Карапетян), которая предназначалась для использования АСУ особого назначения в ВЦ Министерства обороны СССР. Эта машина выполняла до двух миллионов коротких операций в секунду и имела ОП 10-30 Мб на магнитных дисках. Производство машин «Ковер» осуществлялось на опытном заводе ЕрНИИММ, на заводе «Электрон» и на ПО «Раздан» до 1990 г.

В конце 1960-х годов по инициативе Ф. Саркисяна институт принял активное участие в Международной программе создания Единой системы ЭВМ (ЕС-ЭВМ), которые были совместимы с семействами ЭВМ IBM360, 370 и 4300. ЭВМ серии ЕС должны были стандартизировать структуру систем, способы подключения устройств, ПО, средства телеобработки для всех машин и устройств, разрабатываемых в рамках этой программы, и были выпущены большой партией на заводе «Электрон» в Ереване и на Казанском заводе ЭВМ РФ. В 1972 г. в институте собрали одну из первых моделей ЕС ЭВМ - ЕС-1030 (гл. конструкторы - М. Семерджян, А. Кучукян; Госпремия Арм. ССР, 1976 г.). Она предназначалась для решения широкого круга научно-технических и информационно-логических задач. Модель была построена на интегральных микросхемах, имела быстродействие 70 тыс. оп/с, ОП 256-512 Кбайт и внешнюю память на магнитных дисках и лентах. В 1972 г. на Казанском заводе ЭВМ началось ее серийное производство. Машина экспортировалась в Чехословакию, Болгарию, Польшу, Монголию и Индию. ЭВМ ЕС-1030 демонстрировалась на международных ярмарках (Брно, Познань) и удостоилась там золотой медали и диплома.

В институте в 1974 г. начались работы по созданию нового ряда ЕС ЭВМ - «Ряд-2». Машины этого ряда благодаря использованию новых электронных элементов с более высокой степенью интеграции по сравнению с машинами «Ряд-1», имели лучшие технико-экономические характеристики. Одновременно разрабатывались и внедрялись в производство новые методы и технологии монтажа ЭВМ, изготовления многослойных плат, новые методы контроля и конструирования (гл. конструктор Э. Манучарян). В связи с разработкой этих машин в институте появилось новое научно-техническое направление автоматического проектирования устройств, узлов и элементов ЭВМ с помощью самих ЭВМ (начальники отделов А. Петросян, С. Саргсян, Ю. Шукурян, С. Амбарян).

Благодаря созданию и применению ряда программных и аппаратных средств, в первую очередь диагностических и самоконтролирующих, обслуживание машины ЕС-1045, ЕС-1046 по сравнению со старыми моделями ЕС ЭВМ существенно упрощалось (гл. конструктор - А. Кучукан; Госпремия СССР в составе авторского коллектива, 1983 г., Госпремии Арм. ССР 1983 и 1988 гг.). А. Кучукяну за разработку и организацию серийного производства и внедрение в народное хозяйство и оборону страны ЕС ЭВМ была присвоена Ленинская премия (1983) в составе коллектива. ЕС-1045 имела микропрограммное управление, при решении научно-технических задач показывала производительность 880 тыс.оп/с, ОП 4 Мбайт. ЕС 1045 дала возможность создания двухпроцессорной системы с общим полем основной и внешней памяти. Была разработана также ЭВМ четвертого поколения ЕС-1170 (гл. конструктор - А. Кучукян), которая была основана на широком применении больших интегральных схем.

В 1981 г. началась разработка машины средней производительности ЕС 1046 ряда «Ряд-3» (гл. конструктор А. Кучукян). Машина была предназначена для решения широкого круга научно-технических, экономических, информационных и особых задач. Производительность машины доходила до 1,3 млн. оп/с, объем ОП 4-8 Мб, внешняя память на магнитных дисках и лентах. В 1984 г. были проведены государственные и международные испытания и организовано серийное производство ЕС 1046 на Казанском заводе ЭВМ. В 1988г. машина экспонировалась на Международной выставке в Будапеште.

Наряду с разработкой ЭВМ ЕрНИИММ разрабатывал комплексы ЭВМ. Так, на основе ЕС-1030, был создан первый двухмашинный комплекс ЕС ВК-1010 (1975 г. гл. конструктор - В. Русаневич). На основе ЭВМ ЕС1045 и EC-1046 были разработаны двухмашинные (ВК-2М-45, ВК-2М-46), двухпроцессорные (ВК-2П-45, ВК2П-46) и трехмашинные (ВК-3М-45, МВК-46) комплексы с высокой отказоустойчивостью (1975-1981 гг. гл. конструктор - А. Кучукян). С целью повышения производительности ЭВМ для специальных задач институт разработал и сдал в эксплуатацию первый в СССР матричный процессор ЕС 2345 (принят Государственной комиссией в 1980 г., гл. конструктор - А. Кучукян). При совместной работе с ЕС 1045 эквивалентная производительность матричного процессора составила 28 млн. оп/с.

При выполнении своих разработок институт тесно сотрудничал с Научно-Исследовательским Центром Электронной Вычислительной техники (НИЦЭВТ, г. Москва), Институтом Точной Механики и Вычислительной техники (ИТМиВТ, г. Москва), НИИ Автоматической Аппаратуры (г. Москва), НИИ Электронных вычислительных машин (г. Москва) и т. д. Изделия института изготавливались Казанским заводом ЭВМ, Винницким Радиотехническим заводом, Ереванским заводом «Электрон» и др.

Пройдя все этапы всемирной практики развития вычислительной техники, ЕрНИИММ стал одним из крупнейших в СССР центром разработки средств ВТ гражданского и оборонного значения и автоматизированных систем управления. Сотрудничество с ведущими НИИ СССР, а также с передовыми заводами-изготовителями позволили накопить огромный опыт разработки, внедрения и эксплуатации четырех поколений ЭВМ, комплексов и систем автоматического управления. Для республики институт выполнял роль координирующего центра, становление и развитие которого оказались основополагающими для развития этого и других направлений науки и техники - в системе Академии Наук, ВУЗов и отраслевой науки и производства.

К 1992 году численность инженерно-технического персонала института достигла 3500 человек, а вместе с опытным заводом и заводом интегральных схем - более 7000 человек. Сотрудники института опубликовали 16 монографий, 52 научно-технических сборника и сделали 380 изобретений. После развала СССР от ЕрНИИММ отделился НИИ автоматизированных систем управления (ЕрНИИАСУ).

В начале 1970-х гг. в Армении появились: НИИ «Алгоритм» - разработка программного обеспечения для гражданского и оборонного значения, в т.ч. для специализированных ЭВМ; НИИ «АСУ Город» - разработка автоматизированной системы городского хозяйства; НИИ микроэлектроники; ПО «Базальт» - разработка запоминающих устройств для специализированных бортовых систем и др.

Особо хочу отметить огромный вклад Ереванского политехнического института (ЕрПи) в поддержании и продолжении традиций развития ВТ в Армении. Уже в 1955 году на кафедре «Электрические машины и автоматизация» была открыта специализация - математические счётно-решающие приборы и устройства (МСРПУ), которая в 1957 г. отделилась в самостоятельную кафедру «Автоматики и вычислительной техники» (АВТ). Первые выпускники этой специальности и частично выпускники механико-математического факультета Ереванского государственного университета (ЕрГу), составили основной костяк коллектива ЕрНИИММ, ВЦ Академии Наук и ЕрГУ, завода «Электрон» и др.

В 1961 г. в ЕрПи на базе кафедры АВТ (зав. кафедрой д.т.н. профессор Арешян Г.Л. - проректор по научной работе) и кафедры «Электронная техник» (зав. кафедрой к.т.н. доцент Варданян В.Р.) электротехнического факультета создаётся факультет «Автоматика и вычислительная техника» (первый декан к.т.н. доц. Абрамян К.Г.), где по трем специальностям - математические счётно-решающие приборы и устройства (МСРПУ), автоматика и телемеханика (АиТ), промышленная электроника (ПЭ), в шести группах обучалось 150 студентов. В особенности высока была потребность в специалистах МСРПУ. Для увеличения числа выпускников необходимо было увеличивать профессорско-преподавательский и учебно-вспомогательный состав кафедры. С этой целью на кафедру были приглашены из ЕрНИИММ разработчики и создатели первых ЭВМ - д.т.н. Григорян Л.А., д.т.н. Кучукян А.Т., д.т.н. Матевосян П.А., к.т.н. доцент Сагоян А.Н., к.т.н., доцент Мелик-Шахназаров Б.Б., Абрамян Л.С., Гутов А.Н., а также выпускники кафедры - отличники Авакян А.К., Нерсесян Л.К., Ягджян В.Г, Шагинян С.И.

В 1965 году факультет АВТ был преобразован в факультет «Техническая кибернетика». С целью дальнейшего усовершенствования и повышения качества выпускников, благодаря активной деятельности декана факультета Абрамяна К.Г., на базе кафедры АВТ в 1967 г. были созданы две кафедры - «Автоматика и телемеханика» (АиТ) и «Вычислительная техника» (ВТ). Учитывая возрастающий спрос в специалистах, план приёма уже в 1967 - 68 уч. годах по кафедре ВТ составил 250 студентов. Кафедра пополнилась новыми выпускниками и совместно с опытными преподавателями был создан мощный коллектив единомышленников, работающих на одну цель - развитие ВТ как в Армении, так и СССР.

В 1976 г. в связи с сильно возросшим контингентом, факультет «Техническая кибернетика» разделился на три факультета: «Вычислительная техника», «Техническая кибернетик» и «Радиотехника». Учитывая возросший объём учебной нагрузки и численность преподавательского состава (около 100 чел) часть кафедры ВТ отделили в общеинститутскую кафедру «Алгоритмические языки и программирование» (зав кафедрой - к.т.н., доцент Айвазян Ю.А.). В 1986 г. численность студентов обучающихся на кафедре ВТ (вместе с вечерними группами) возросла до 2000. В этот же год на кафедре была введена новая специализация «Программное обеспечение вычислительной техники и автоматизированных систем» (зав. кафедрой - к.т.н., доцент Ягджян В.Г.)

В 1967, учитывая значительный научный потенциал, на кафедру ВТ из Москвы поступил заказ от одного из крупных НИИ военно-промышленного комплекса страны, на выполнение хоздоговорной темы: «Разработка и создание регистратора быстропеременных процессов». Были разработаны два типа регистраторов (хронографов). Оба были изготовлены на материально-технической базе кафедры силами только её сотрудников. Тема велась до 1971 года (научный руководитель зав. кафедрой ВТ к.т.н. доц. Абрамян К.Г.) и была выполнена на высоком уровне. С этого времени на кафедре ВТ параллельно с педагогической и методологической деятельностью силами сотрудников кафедры проводились научные исследования на уровне хоздоговорных и госбюджетных работ как республиканского, так и общесоюзного масштаба. Так, в 1971 - 1976 сотрудники кафедры ВТ выполнили широкомасштабную хоздоговорную работу «Разработка и внедрение регионального АСУ Аэрофлот» (научный руководитель Абрамян К.Г.), которая бала внедрена во многих городах СССР.

В 1977 - 1981 выполнялась госбюджетная работа «Разработка и создание У ниверсальной М ногоуровневой С истемы А втоматизированного П оиска» - УМСАП и в дальнейшем создание «С истемы У правления Б азами Д анных» - СУБД (ответственный исполнитель - Ягджян В.Г.). В 1982 - 1984 на базе апробированной СУБД была внедрена система «Разработка и создание АСУ Высшая школа» и уже в 1984 г. успешно были запущены подсистемы «Расписание» и «Приём и проведение вступительных экзаменов абитуриентов» (ответственный исполнитель Ягджян В.Г.) В 1977- 1980 часть сотрудников кафедры занялась проблемами оптимизации технологических процессов, и выполнила хоздоговорную работу «Разработка и внедрение системы оптимизации технологических процессов Зодского золоторудного комбината» (ответственный исполнитель - к.т.н. доц. Гаспарян Т.Г.); в 1980 - 1983 выполнялась хоздоговорная работа «Разработка и внедрение системы оптимизации технологических процессов Каджаранского медно-молибденового комбината» (ответственный исполнитель Гаспарян Т.Г.), что позволило создать единый комплекс решения задач оптимизации технологических процессов, который был внедрён более чем в 10 добывающих регионах СССР. В 1985 г. от Госснаба СССР поступил заказ на создание «Автоматизированной системы рационального использования вторичных минеральных ресурсов». На базе разработанной на кафедре СУБД УМСАП-4 группой преподавателей кафедры к 1986 г. был создан АС социативный М ногоуровневый И нформационный К омплекс - АСМИК (ответственный исполнитель Гаспарян Т.Г.). По инициативе Госснаба СССР и Всесоюзного НИИ вторичных ресурсов (ВИВР) система с 1986 по 1989 год была внедрена в 18 регионах СССР. В 1989 г. силами группы разработчиков АСМИК был создан Экологический информационный центр при ЕрПИ (руководители Гаспарян Т.Г, Оганджанян С.Б.), получивший бюджетное финансирование от правительства Армении; в этот же период по заказу Государственного Комитета по газификации Арм. ССР при поддержке Совета Министров Арм. ССР и Госплана Арм. ССР сотрудниками кафедры (10 чел) была проведена масштабная работа «Разработка концепции топливно-энергетического комплекса Арм. ССР» (руководители Гаспарян Т.Г, Оганджанян С.Б.), которая получила высокую оценку и поддержку руководства СМ Арм. ССР. Однако наступивший развал Советского Союза, экономическая блокада и смена власти привели к приостановлению этой и других работ.

В заключение могу сказать, что традиции еще сохраняются. На месте крупных предприятий создано много мелких, которые с экономической точки зрения, более оперативно реагируют на конъюнктуру рынка, могут быстрее перестроиться, однако все это ориентировано в основном на обслуживание ведущих зарубежных фирм.

Материалы международной конференции SORUCOM 2011 (12–16 сентября 2011 года)
Статья помещена в музей 22.07.2013 с разрешения авторов




Вершиной работы Лебедева по созданию универсальных ЭВМ стала самая известная в мире отечественная ЭВМ БЭСМ-6 (1967 год). По результатам работы над БЭСМ-6 Лебедев с группой сотрудников ИТМ и ВТ, в которую входили будущий академик В. А. Мельников и будущий главный конструктор модульного конвейерного процессора (лучшей ЭВМ России 90-х годов) А. А. Соколов, получил Государственную премию.


В БЭСМ-6 впервые был широко использован принцип совмещения выполнения команд. Механизмы прерывания, защиты памяти и другие новаторские решения позволили использовать БЭСМ-6 в мультипрограммном режиме и режиме разделения времени. Машина имела 128 кб оперативной памяти, работала с тактовой частотой 10 МГц и рекордный для того времени производительностью- около 1миллиона операций в секунду.


В конце 60-х и в 70-х годах флагманом отечественной вычислительной техники становится ЭВМ БЭСМ-6. Коллектив научной школы создает для этой машины множество системных программ суммарным объемом свыше 100 тысяч команд. В частности, были реализованы 5 трансляторов и набор программ, управляющих работой различных устройств машины в реальном времени. В Институте была разработана операционная система ОС ИПМ для БЭСМ-6, которая была одной из наиболее развитых операционных систем своего времени и содержала многие черты будущей широко распространенной системы UNIX.


Разработчики системы нашли ряд интересных применений аналогии между взаимодействием программ в компьютере и взаимодействием людей в коллективе. Большой комплекс работ по системному программному обеспечению БЭСМ-6 связан с созданием и развитием ОС ДИСПАК и систем, работающих под ее управлением: файловых систем, систем управления задачами, диалоговых систем. Эти системы были широко востребованы и установлены на сотнях машин БЭСМ-6 по всей стране. При создании операционной системы ОС ИПМ были реализованы такие общепринятые в настоящее время механизмы взаимодействия программ, как параллельные процессы, подчиненные задачи, события, передача сообщений (почта).

ОТВЕТЫ НА ВОПРОСЫ

К Государственному экзамену

по специальности 23020165 «Информационные системы и технологии»

Дисциплина «Архитектура ЭВМ и систем»

1. Эволюция ЭВМ. Первое поколение ЭВМ: 1950-1960 годы. Второе поколение ЭВМ: 1960-1970 годы. Третье поколение ЭВМ: 1970-1980 годы. Четвертое поколение ЭВМ: 1980-1990 годы. Пятое поколение ЭВМ: 1990 год – настоящее время. Шестое и последующие поколения ЭВМ [Л.1, стр. 50…60].

Начиная с 1950 года, каждые 7-10 лет кардинально обновлялись конструктивно-технологические и программно-алгоритмические принципы построения и использования ЭВМ. В связи с этим правомерно говорить о поколениях вычислительных машин. Условно каждому поколению можно отвести 10 лет.

Первое поколение ЭВМ 1950-1960-е годы

Логические схемы создавались на дискретных радиодеталях и электронных вакуумных лампах с нитью накала. В оперативных запоминающих устройствах использовались магнитные барабаны, акустические ультразвуковые ртутные и электромагнитные линии задержки, электронно-лучевые трубки (ЭЛТ). В качестве внешних запоминающих устройств применялись накопители на магнитных лентах, перфокартах, перфолентах и штекерные коммутаторы (оборудование, которое используется для соединения хостов компьютерной сети).

Программирование работы ЭВМ этого поколения выполнялось в двоичной системе счисления на машинном языке, то есть программы были жестко ориентированы на конкретную модель машины и "умирали" вместе с этими моделями.

В середине 1950-х годов появились машинно-ориентированные языки типа языков символического кодирования (ЯСК), позволявшие вместо двоичной записи команд и адресов использовать их сокращенную словесную (буквенную) запись и десятичные числа. В 1956 году был создан первый язык программирования высокого уровня для математических задач - язык Фортран, а в 1958 году - универсальный язык программирования Алгол.

ЭВМ, начиная от UNIVAC и заканчивая БЭСМ-2 и первыми моделями ЭВМ "Минск" и "Урал", относятся к первому поколению вычислительных машин.

Второе поколение ЭВМ: 1960-1970-е годы

Логические схемы строились на дискретных полупроводниковых и магнитных элементах (диоды, биполярные транзисторы, тороидальные ферритовые микротрансформаторы). В качестве конструктивно-технологической основы использовались схемы с печатным монтажом (платы из фольгированного гетинакса). Широко стал использоваться блочный принцип конструирования машин, который позволяет подключать к основным устройствам большое число разнообразных внешних устройств, что обеспечивает большую гибкость использования компьютеров. Тактовые частоты работы электронных схем повысились до сотен килогерц.

Стали применяться внешние накопители на жестких магнитных дисках и на флоппи-дисках - промежуточный уровень памяти между накопителями на магнитных лентах и оперативной памятью.

В 1964 году появился первый монитор для компьютеров - IBM 2250. Это был монохромный дисплей с экраном 12 х 12 дюймов и разрешением 1024 х 1024 пикселов. Он имел частоту кадровой развертки 40 Гц.

Создаваемые на базе компьютеров системы управления потребовали от ЭВМ более высокой производительности, а главное - надежности. В компьютерах стали широко использоваться коды с обнаружением и исправлением ошибок, встроенные схемы контроля.

В машинах второго поколения были впервые реализованы режимы пакетной обработки и телеобработки информации.

Первой ЭВМ, в которой частично использовались полупроводниковые приборы вместо электронных ламп, была машина SEAC (Standarts Eastern Automatic Computer), созданная в 1951 году.

В начале 60-х годов полупроводниковые машины стали производиться и в СССР.

Компьютерная грамотность предполагает наличие представления о пяти поколениях ЭВМ, которое Вы получите после ознакомления с данной статьей.

Когда говорят о поколениях, то в первую очередь говорят об историческом портрете электронно-вычислительных машин (ЭВМ).

3.
4.
5.

Фотографии в фотоальбоме по истечении определенного срока показывают, как изменился во времени один и тот же человек. Точно так же поколения ЭВМ представляют серию портретов вычислительной техники на разных этапах ее развития.

Всю историю развития электронно-вычислительной техники принято делить на поколения. Смены поколений чаще всего были связаны со сменой элементной базы ЭВМ, с прогрессом электронной техники. Это всегда приводило к росту быстродействия и увеличению объема памяти. Кроме этого, как правило, происходили изменения в архитектуре ЭВМ, расширялся круг задач, решаемых на ЭВМ, менялся способ взаимодействия между пользователем и компьютером.

ЭВМ первого поколения

Онибыли ламповыми машинами 50-х годов. Их элементной базой были электровакуумные лампы. Эти ЭВМ были весьма громоздкими сооружениями, содержавшими в себе тысячи ламп, занимавшими иногда сотни квадратных метров территории, потреблявшими электроэнергию в сотни киловатт.

Например, одна из первых ЭВМ – представляла собой огромный по объему агрегат длиной более 30 метров, содержала 18 тысяч электровакуумных ламп и потребляла около 150 киловатт электроэнергии.

Для ввода программ и данных применялись перфоленты и перфокарты. Не было монитора, клавиатуры и мышки. Использовались эти машины, главным образом, для инженерных и научных расчетов, не связанных с переработкой больших объемов данных. В 1949 году в США был создан первый полупроводниковый прибор, заменяющий электронную лампу. Он получил название транзистор .

ЭВМ второго поколения

В 60-х годах транзисторы стали элементной базой для ЭВМ второго поколения. Машины стали компактнее, надежнее, менее энергоемкими. Возросло быстродействие и объем внутренней памяти. Большое развитие получили устройства внешней (магнитной) памяти: магнитные барабаны, накопители на магнитных лентах.

В этот период стали развиваться языки программирования высокого уровня: ФОРТРАН, АЛГОЛ, КОБОЛ. Составление программы перестало зависеть от конкретной модели машины, сделалось проще, понятнее, доступнее.

В 1959 г. был изобретен метод, позволивший создавать на одной пластине и транзисторы, и все необходимые соединения между ними. Полученные таким образом схемы стали называться интегральными схемами или чипами. Изобретение интегральных схем послужило основой для дальнейшей миниатюризации компьютеров.

В дальнейшем количество транзисторов, которое удавалось разместить на единицу площади интегральной схемы, увеличивалось приблизительно вдвое каждый год.

ЭВМ третьего поколения

Это поколение ЭВМ создавалось на новой элементной базе – интегральных схемах (ИС) .

ЭВМ третьего поколения начали производиться во второй половине 60-х годов, когда американская фирма IBM приступила к выпуску системы машин IBM-360. Немного позднее появились машины серии IBM-370.

В Советском Союзе в 70-х годах начался выпуск машин серии ЕС ЭВМ (Единая система ЭВМ) по образцу IBM 360/370. Скорость работы наиболее мощных моделей ЭВМ достигла уже нескольких миллионов операций в секунду. На машинах третьего поколения появился новый тип внешних запоминающих устройств – магнитные диски.

Успехи в развитии электроники привели к созданию больших интегральных схем (БИС) , где в одном кристалле размещалось несколько десятков тысяч электрических элементов.

В 1971 году американская фирма Intel объявила о создании микропроцессора. Это событие стало революционным в электронике.

– это миниатюрный мозг, работающий по программе, заложенной в его память.

Соединив микропроцессор с устройствами ввода-вывода и внешней памяти, получили новый тип компьютера: микро-ЭВМ.

ЭВМ четвертого поколения

Микро-ЭВМ относится к машинам четвертого поколения. Наибольшее распространение получили персональные компьютеры (ПК). Их появление связано с именами двух американских специалистов: и Стива Возняка. В 1976 году на свет появился их первый серийный ПК Apple-1, а в 1977 году – Apple-2.

Однако с 1980 года «законодателем мод» на рынке ПК становится американская фирма IBM. Ее архитектура стала фактически международным стандартом на профессиональные ПК. Машины этой серии получили название IBM PC (Personal Computer). Появление и распространение ПК по своему значению для общественного развития сопоставимо с появлением книгопечатания.

С развитием этого типа машин появилось понятие «информационные технологии», без которых невозможно обойтись в большинстве областей деятельности человека. Появилась новая дисциплина – информатика.

ЭВМ пятого поколения

Они будут основаны на принципиально новой элементной базе. Основным их качеством должен быть высокий интеллектуальный уровень, в частности, распознавание речи, образов. Это требует перехода от традиционной фон-неймановской к архитектурам, учитывающим требования задач создания искусственного интеллекта.


Таким образом, для компьютерной грамотности необходимо понимать, что на данный момент создано четыре поколения ЭВМ :

  • 1-ое поколение: 1946 г. создание машины ЭНИАК на электронных лампах.
  • 2-ое поколение: 60-е годы. ЭВМ построены на транзисторах.
  • 3-ье поколение: 70-е годы. ЭВМ построены на интегральных микросхемах (ИС).
  • 4-ое поколение: Начало создаваться с 1971 г. с изобретением микропроцессора (МП). Построены на основе больших интегральных схем (БИС) и сверх БИС (СБИС).

Пятое поколение ЭВМ строится по принципу человеческого мозга, управляется голосом. Соответственно, предполагается применение принципиально новых технологий. Огромные усилия были предприняты Японией в разработке компьютера 5-го поколения с искусственным интеллектом, но успеха они пока не добились.