Утеплители Изоляция Блоки

Развитие водорослей. Водоросли: общая характеристика, происхождение, систематика, распространение, хозяйственное значение Эволюция зеленых водорослей

Водоросли — это многоклеточные, преимущественно водные, эукариотические фотосинтезирующие организмы, которые не имеют тканей или тело которых не дифференцировано на вегетативные органы (т.е. относящиеся к подцарству низших растений).

Систематические отделы водорослей (различаются по струк туре таллома, набору фотосинтезирующих пигментов и запасных питательных веществ, особенностям размножения и циклов развития, местообитанию и т. п.):
■ Золотистые;
■ Зеленые (примеры: спирогира, улотрикс);
■ Красные (примеры: порфира, филлофора);
■ Бурые (примеры: лессония, фукус);
■ Харовые (примеры: хара, нителла);
■ Диатомовые (пример: ликмофора) и др.
Количество видов водорослей — более 40 тыс.

Среда обитания водорослей: пресные и соленые водоемы, влажная почва, кора деревьев, горячие источники, ледники и т.д.

Экологические группы водорослей: планктонные, бентосные (), наземные, почвенные и др.

Планктонные формы представлены зелеными, золотистыми и желто-зелеными водорослями, имеющими специальные приспособления для облегчения переноса водой: уменьшающие плотность организмов (газовые вакуоли, включения липидов, студенистую консистенцию) и увеличивающие их поверхность (разветвленные выросты, приплюснутую или вытянутую форму тела и др.).

Бентосные формы обитают на дне водоемов или обволакивают находящиеся в воде предметы; к субстрату прикрепляются ризоидами, базальными дисками и присосками. В морях и океанах они представлены преимущественно бурыми и красными водорослями, а в пресных водоемах — всеми отделами водорослей, кроме Бурых. Бентосные водоросли содержат крупные хло-ропласты с высоким содержанием хлорофилла.

Наземные , или воздушные , водоросли (это обычно Зеленые или Желто-зеленые водоросли) образуют налеты и пленки различного цвета на коре деревьев, влажных камнях и скалах, заборах, крышах домов, на поверхности снега и льда и т.п. При недостатке влаги наземные водоросли пропитываются органическими и неорганическими веществами.

Почвенные водоросли (в основном Желто-зеленые, Золотистые и Диатомовые) живут в толще почвенного слоя на глубине до 1-2 м.

Особенности строения водорослей

Тело водорослей не разделено на вегетативные органы и представлено прочным в упругим талломом (слоевищем) . Структура таллома — нитчатая (примеры: улотрикс, спирогира), пластинчатая {пример: ламинария), разветвленная или кустистая (пример: хара). Размеры — от 0,1 мм до нескольких десятков метров (у некоторых бурых и красных водорослей). Таллом разветвленных и кустистых водорослей — рассеченный и имеет линейно-членистое строение; в нем можно различить главную ось, «листья» и ризоиды.

У некоторых водорослей имеются специальные воздушные пузыри , которые удерживают слоевище у поверхности воды, где есть возможность максимального улавливания света для фотосинтеза.

Таллом многих водорослей выделяет слизь, которая заполняет их внутренние полости и частично выводится наружу, помогая лучше удерживать воду в препятствуя обезвоживанию.

Клетки таллома водорослей не дифференцированы и имеют проницаемою клеточную оболочку, внутренний слой которой состоит из целлюлозы, а наружный — из пектиновых веществ и (у многих видов) ряда добавочных компонентов: извести, лигнина, кутина (задерживающего ультрафиолетовые лучи и предохраняющего клетки от излишней потери воды в период отлива) и др. Оболочка выполняет защитную и опорную функции, обеспечивая при этом возможность роста. При дефиците влаги оболочки значительно утолщаются.

Цитоплазма клетки у большинства водорослей образует тонкий слой между большой центральной вакуолью и клеточной стенкой. В цитоплазме имеются органеллы: хроматофоры , эндоплазматический ретикулум, митохондрии, аппарат Гольджи, рибосомы, одно или несколько ядер.

Хроматофоры — это органеллы водорослей, содержащие фотосинтезирующие пигменты, рибосомы, ДНК, липидные гранулы и пиреноиды . В отличие от хлоропластов высших растений хроматофоры более разнообразны по форме (могут быть чашевидными, лентовидными, пластинчатыми, звездчатыми, дисковидными и др.), размерам, числу, строению, местоположению и набору фотосинтезирующих пигментов.

У мелководных (зеленых ) водорослей фотосинтезирующими пигментами являются в основном хлорофиллы а и b, поглощающие красный и желтый свет. У бурых водорослей, обитающих на средних глубинах, куда проникает зеленый и синий свет, фотосинтезирующими пигментами являются хлорофиллы а и с, а также каротин и фукоксантин , имеющие бурый цвет. У красных водорослей, обитающих на глубинах до 270 м, фотосинтезирующими пигментами являются хлорофилл d (характерный только для этой группы растений) и имеющие красноватую окраску фикобилины — фикоэритрин, фикоцианин и аллофикоцианин, хорошо поглощающие синие и фиолетовые лучи.

Пиреноиды — особые включения, входящие в состав матрикса хроматофор и являющиеся зоной синтеза и накопления запасных питательных веществ.

Запасные вещества водорослей: крахмал, гликоген, масла, полисахариды и др.

Размножение водорослей

Водоросли размножаются бесполым и половым путем.

❖ Органы размножения водорослей (одноклеточные):
■ спорангии (органы бесполого размножения);
■ гаметангии (органы полового размножения).

❖ Способы бесполого размножения водорослей: вегетативное (фрагментами таллома) или одноклеточными зооспорами.

❖ Формы полового процесса у водорослей:
изогамия — слияние одинаковых по строению и величине подвижных гамет,
гетерогамия — слияние подвижных гамет разных размеров (более крупную считают женской),
оогамия — слияние крупной неподвижной яйцеклетки со сперматозоидом,
конъюгация — слияние содержимого двух неспециализированных клеток.

Половой процесс завершается образованием диплоидной зиготы, из которой формируется новая особь или образуются подвижные жгутиковые зооспоры , служащие для расселения водоросли.

❖ Особенности размножения водорослей:
■ у некоторых видов водорослей каждая особь способна формировать (в зависимости от времени года или условий среды) и споры, и гаметы;
■ у отдельных видов водорослей функции бесполого и полового размножения выполняют разные особи — спорофиты (они образуют споры) и гаметофиты (они формируют гаметы);
■ в цикле развития многих видов водорослей (красных, бурых, некоторых зеленых) наблюдается строгое чередование поколений — спорофита и гаметофита ;
■ гаметы водорослей, как правило, обладают таксисами, определяющими направление их движения в зависимости от интенсивности света, температуры и т.п.;
■ безжгутиковые споры совершают амебоидное движение;
■ у морских водорослей выход спор или гамет совпадает с приливом; период покоя в развитии зиготы отсутствует (т.е. зигота начинает развиваться сразу же после оплодотворения, чтобы не быть унесенной в море).

Значение водорослей

❖ Значение водорослей:
■ они за счет фотосинтеза продуцируют органические вещества;
■ насыщают воду кислородом и поглощают из нее двуокись углерода;
■ являются пищей для водных животных;
■ являются родоначальниками растений, заселивших сушу;
■ участвовали в образовании горных известняковых и меловых пород, некоторых видов каменного угля и горючих сланцев;
■ зеленые водоросли очищают водоемы, загрязненные органическими отбросами;
■ используются человеком как органические удобрения и кормовые добавки в рацион животных;
■ используются в биохимической, пищевой и парфюмерной промышленности для получения белков, витаминов, спиртов, органических кислот, ацетона, йода, брома, агар-агара (необходим для изготовления мармелада, пастилы, суфле и т.п.), лаков, красителей, клея;
■ многие виды используются в пищу человеком (ламинария, некоторые зеленые и красные водоросли);
■ некоторые виды применяются при лечении рахита, зоба, желудочно-кишечных и других заболеваний;
■ ил из отмерших водорослей (сапропель) используется в грязелечении;
■ могут вызывать «цветение» воды.

Зеленые водоросли

❖ Спирогира

Местообитание: пресные стоячие и медленно текущие водоемы, где она образует тину ярко-зеленого цвета; распространена в Беларуси.

Форма тела: тонкая нитевидная; клетки расположены в один ряд.

Особенности строения клетки — цилиндрической формы с хорошо выраженной клеточной стенкой; покрыты пектиновой оболочкой и слизистым чехлом. Хроматофор лентовидный, спирально закрученный. Вакуоль занимает большую часть клетки. Ядро расположено в центре и соединяется тяжами с пристенной цитоплазмой; содержит гаплоидный набор хромосом.

Размножение: бесполое осуществляется путем разрыва нити на короткие участки; спорообразование отсутствует. Половой процесс — конъюгация. При этом две нити водорослей обычно располагаются параллельно друг другу и срастаются при помощи копуляционных выростов или мостиков. Затем оболочки клеток в местах соприкосновения нитей растворяются, образуя сквозной канал, через который содержимое одной из клеток перемещается в клетку другой нити и сливается с ее протопластом, образуя зиготу с плотной оболочкой. Зигота делится мей-озом; образуются 4 ядра, три из них погибают; из оставшейся клетки после периода покоя развивается взрослая особь.

❖ Улотрикс

Местообитание: пресные, реже морские и солоноватые водоемы, почва;

Дало начало жизни на Земле. Древнейшие водоросли - эти первенцы зеленого мира - уже в первую раннюю эру (протерозойскую) были очень многочисленны и разнообразны. Они заполняли все места , к которым проникал хотя бы слабый свет. Развитие водорослей дало начало жизни на Земле. Водоросли создали условия для развития животных с обменом веществ, основанном на использовании кислорода: свободный кислород возник, как полагают, в воде, а следовательно, и в атмосфере, в результате фотосинтеза у водорослей.

Растительная жизнь в древнем океане

О богатстве растительной жизни в древнем океане можно отчасти судить по современным водорослям, производящим очень много зеленой массы. Вычислено, что гектар поверхности моря по производительности зеленой массы равняется двум гектарам сельскохозяйственных культур. Можно предположить, что и в те далекие времена, когда существовали лишь низшие водоросли, зеленая масса морей была не менее значительной, чем теперь. Об этом свидетельствуют крупнейшие скопления нефти и горючих сланцев, сохранившиеся в древнейших геологических отложениях.

Одноклеточные существа

Очень интересной группой являются жгутиковые - одноклеточные существа . Среди них есть:
  • виды с зеленым хлорофилловым питанием;
  • виды, не имеющие хлорофиллового питания, живущие за счет готовых органических веществ;
  • и такие, которые питаются и тем и другим способами.
Учитывая эту особенность жгутиковых, некоторые ученые считают их родоначальной группой, от которой произошло все современное разнообразие растений и животных.

Размножение одноклеточных водорослей

Очень важное событие в жизни одноклеточных водорослей - возникновение полового размножения . Среди современных простейших есть такие, которые размножаются лишь простым делением. Несомненно, этот способ размножения сохранился с тех времен, когда других еще не существовало. Но, вероятно, на очень ранней ступени развития зеленых одноклеточных водорослей у них, кроме простого деления клетки, возникло и «смешанное» размножение - половое, когда два растения, сливаясь вместе, образуют одну клетку (зиготу), и бесполое, при котором эта зигота снова может размножаться простым делением. Полагают, что такой «смешанный» способ размножения создал наилучшие возможности для приспособляемости к условиям окружающей среды.
За счет водорослей жило и развивалось животное население моря. Но животные вели более активную жизнь, поэтому их развитие пошло значительно дальше, чем водорослей. Уже в первые периоды палеозойской эры существовали высокоорганизованные животные, вплоть до первичных водных позвоночных.

Разнообразие водорослей

Постепенно водоросли приобрели известное разнообразие , особенно когда возникли многоклеточные их виды. Это имело исключительно большое значение для развития жизни на Земле. Хотя одноклеточные организмы довольно легко приспосабливаются к условиям существования (о чем говорит чудесный по разнообразию форм мир одноклеточных), все же возможности для этого у них несравнимо более ограниченные, чем у многоклеточных. Известно, что одноклеточные организмы приспосабливаются к среде благодаря образованию в их протоплазме различных включений (белков и других), играющих важную роль в их жизни. У многоклеточных же усложнение обмена веществ происходит в результате образования специализированных тканей, выполняющих в жизнедеятельности организма строго определенные функции. Многоклеточность намного расширила приспособляемость водорослей, а это обеспечило им дальнейшее развитие, в результате чего для некоторых из водорослей открылся новый путь - путь на сушу. На многообразие водорослей, вероятно, повлияли различные условия освещения в море, в связи с чем возникли пигменты, из которых образовался впоследствии хлорофилл, (подробнее: ). Но не все водоросли зеленые. В разных условиях фотосинтеза, очевидно, имеют значение разные цвета спектра, поэтому окраска водорослей бывает различной.

Группы водорослей

разбивают на группы (типы):
  • самые простые - сине-зеленые (являющиеся, как полагают, и самыми древними),
  • наиболее глубоководные - красные, или багрянки,
  • затем - бурые, зеленые, золотисто-зеленые, диатомовые и другие.
Одноклеточные первичные водоросли сыграли важную роль в развитии жизни на Земле. Они дали новый, прогрессивный способ размножения, заключающийся в чередовании бесполого и полового размножения, что улучшило приспособляемость организмов к условиям существования; создали благоприятные условия для развития разнообразнейшего мира водных животных; наконец, из них развились многоклеточные формы водорослей, среди которых оказались растения, способные «выйти» на сушу.

Из воды на сушу

Не очень многим отличались первые наземные зеленые растения от своих водных сородичей, но эти отличия имели весьма существенное значение для их развития.
Дарвин открыл важную закономерность развития: новый признак, возникший у организма в определенных условиях, будет развиваться и совершенствоваться, если сохранятся условия, вызвавшие появление этого признака. Такие признаки «подхватываются естественным отбором», то-есть приобретают устойчивость в жизни организма, усиливаясь из поколения в поколение. Поэтому в развитии организмов самые незначительные свойства могут оказаться ведущими, если они в данных условиях полезны организму.

Ведущие свойства в развитии водорослей

Какие же свойства были ведущими в развитии водорослей в тот период, когда у них начали появляться первые признаки наземных растений?

Борьба с высыханием

Прежде всего это были свойства, предохранявшие водоросли от быстрого высыхания; история развития сухопутных растений - это история их борьбы с высыханием . Началось это, очевидно, с того, что оболочки наружных клеток водорослей становились все более и более плотными. Такое явление первоначально могло возникнуть где-либо в прибрежье, где растения время от времени оказывались под действием атмосферного воздуха, например в условиях и в других подобных местах.
Морской прилив. В дальнейшем это повело к образованию различных плотных тканей, не только защищавших растения от быстрого высыхания, но и служивших им механической защитой в условиях воздушной среды менее плотной и более подвижной, чем вода.

Приспособление к питанию

Одновременно происходили и другие изменения водорослей, вызванные прежде всего приспособлением к питанию в новых условиях. Наземные их части приспособлялись к ассимиляции из воздуха углекислого газа, а подземные, образовавшиеся из ризоидов, (образований у некоторых водорослей, с помощью которых растение прикрепляется ко дну водоема) - к снабжению водой и минеральными солями. В связи с этим возникли проводящие пути между наземными и подземными частями водорослей.

Совершенствовались способы размножения растений

В процессе естественного отбора менялись, развивались и совершенствовались способы размножения в воздушной среде. Впоследствии это привело к сложным формам размножения, наблюдаемым у позднейших высших цветковых растений. Условия, в которых зарождалась наземная жизнь, не могли быть везде одинаковыми. Поэтому водоросли, приспосабливавшиеся к существованию на суше, были довольно разнообразными. Это, в свою очередь, определило известное разнообразие наземного зеленого мира с самого начала его возникновения. По мере того, как зеленая полоса, окаймлявшая водоемы, становилась шире, усложнялась связь между видами растений и между растениями и природными условиями их существования, например почвой.

Борьба за существование

Между растениями возникли разнообразные отношения, которые Дарвин назвал борьбой за существование . Под этим выражением он подразумевал и отношения «борьбы» (то-есть когда одна форма, оказавшаяся лучше приспособленной к данным условиям, чем другая, вытесняет последнюю), и такие, когда одни организмы своим существованием создают благоприятные условия для жизни других, и, наконец, отношения, при которых взаимная связь между разными организмами становится настолько тесна, что один из них уже не может существовать без другого («взаимопомощь», симбиоз). В процессе жизни наземных растений создавались и условия, необходимые для этой жизни, образовывалась почва - среда водного и минерального питания. Всякая почва - продукт исторического развития. Первобытная почва, возникшая в эпоху освоения суши зеленым миром, развивалась как сложное природное образование, в создании которого участвовали и зеленые растения (а впоследствии и животные), и минеральные вещества, и микроорганизмы (бактерии и мельчайшие грибки), и лишайники. Последние представляют биологически сложные растения, состоящие из одноклеточных водорослей и простейших

Решение проблемы происхождения высших растений, то есть практически наземной флоры и растительности, требует ответа на 3 вопроса.

1. Каковы были предки высших растений?

2. Когда высшие растения появились на нашей планете?

3. Какие условия способствовали развитию наземной флоры?

Первые гипотезы, объяснявшие возможность перехода от водорослей к высшим растениям, появились в конце XIX века (Ф. Боуэр, Ф. Фрич, Р. Веттштейн). Внимание исследователей было обращено на:

Строгую ритмичность в смене ядерных фаз и, как следствие этого,

Четко выраженное чередование диплоидного, бесполого поколения

Спорофита и гаплоидного, полового поколения - гаметофита;

Тенденцию к более мощному развитию спорофита, чем гаметофита, проявляющуюся у всех высших растений за исключением мхов;

Наличие у большинства высших растений, кроме цветковых, специфических многоклеточных половых органов - антеридиев и архегониев, что позволяет называть эти растения архегониальными.

Возникновение спорофита имело важные биологические последствия.

1. С увеличением числа мейозов, происходящих в клетках многоклеточного спорангия , связано и увеличение числа возможных перекомбинаций генов, что составляет основу видовой изменчивости.

2. Увеличение числа продуцируемых спорофитом спор, приспособленных к широкому распространению, способствовало более интенсивному размножению и расселению растений. Чем больше спор, тем больше разовьется из них гаметофитов, тем выше вероятность, что они окажутся в условиях, благоприятствующих осуществлению полового процесса, а следовательно, и развитию спорофитов.

Принимая во внимание, что у многих высших растений гаметофиты на ранних стадиях развития имеют нитчатое строение, возможными предками\nвысших растений считали нитчатые зеленые водоросли, обитающие в мелководьях или в полосе прилива, а их дальнейшая эволюция происходила уже после выхода на сушу и сопровождалась не только сложными морфологическими преобразованиями, но и появлением гетероморфного цикла развития.

Г. Шенк, Г. Потонье разработали гипотезу происхождения высших растений от бурых водорослей. Из отечественных ботаников ее сторонником был К. И. Мейер. Обоснованиями этой гипотезы служили наличие у некоторых бурых водорослей, например, у ламинарии, четко выраженной смены поколений и гетероморфного цикла развития, сложное расчленение тела, дифференциация нескольких тканей, а также появление у других представителей этого отдела многоклеточных спорангиев и гаметангиев. В то же время настораживают различия в составе пигментов: бурые водоросли имеют хлорофилл А и С (последний у других растений не выявлен), добавочный пигмент фукоксантин; продуктами запаса служат ламинарии и шестиатомный спирт маннит. Кроме того, бурые водоросли - исключительно морские организмы и, если признать их филогенетическую связь с высшими растениями, то следует предположить, что последние появились в мелководьях морей. Однако, среди архегониальных растений нет представителей морской флоры, лишь 2-3 десятка видов цветковых растений встречаются в соленых водах (явление, несомненно, вторичное).

Во второй половине XX века Л. Стеббинс, М. Шадефо и др. снова стали связывать происхождение высших растений с зелеными водорослями. И те, и другие характеризуются наличием хлорофилла А и В, их пластиды имеют хорошо выраженную систему внутренних мембран, основным запасным веществом служит крахмал. У зеленых водорослей выявлены практически все возможные циклы развития, все типы половых процессов, наряду с подвижными зооспорами у них встречаются и неподвижные апланоспоры, характерные для высших растений. Живут они преимущественно в пресной воде, встречаются и на суше. Такое морфологическое и экологическое разнообразие позволило этой группе водорослей эволюционировать в разных направлениях.

В настоящее время большое распространение получила гипотеза происхождения высших растений от водорослей, напоминающих ныне живущие харовые. С высшими растениями их сближает характер развития межклеточной пластинки, начинающегося на заключительных этапах митоза. У большинства водорослей боковые стенки клетки образуют складку в виде кольцевой диафрагмы, которая, развиваясь центростремительно, смыкается в центре. У высших растений и харовых водорослей в формировании межклеточной пектиновой пластинки участвует фрагмопласт - система микротрубочек, располагающихся в экваториальной плоскости митотического веретена. Межклеточная пластинка развивается центробежно. Фрагмопластный тип цитокинеза свойствен и некоторым представителям класса улотриксовых.

Харовые водоросли - организмы со сложным морфологическим расчленением талломов, имеющие многоклеточные оогонии. Они живут не только в пресной, но и солоноватой воде, некоторые ведут наземный образ жизни, хотя и приурочены к влажным местообитаниям. Полагают, что эволюция древнейших харовых водорослей, которая могла привести к возникновению высших растений, происходила в наземных условиях, при этом важную роль играл симбиоз с грибами, обеспечивающий лучшее использование минеральных веществ и поглощение воды, что в условиях жизни на суше имело большое значение.

Существуют и другие взгляды на происхождение высших растений. Согласно одного из них, предками высших растений могла быть какая-то гипотетическая группа, сочетающая признаки бурых и зеленых водорослей.

Все эти гипотезы, конечно, интересны, но на сегодняшний день остаются только гипотезами.

На вопросы о времени и условиях появления высших растений на Земле можно дать более точные ответы.

Если история водорослей началась в протерозое, то высшие растения возникли в палеозое, вероятно, в силуре. К этому времени относится одна из наиболее древних палеоботанических находок - куксония (рис. 11 А), произраставшая на Земле 415 млн лет назад. Она была обнаружена в 1937 г. У. Лангом в силурийских песчаниках Шотландии. Растение представляло собой похожий на водоросль кустик зеленых веточек, несущих спорангии, и прикреплялось к субстрату с помощью ризоидов. Возможно, что первенцы наземной флоры имели еще более простое строение.

Силур считают наиболее вероятным временем возникновения высших растений прежде всего потому, что в этот период палеозоя происходили значительные изменения климатических условий, способствовавшие не только обмелению океана, но и опреснению воды. Поэтому предки высших растений должны были приспособиться к жизни сначала в солоноватой, затем в пресной воде, в эстуариях, на мелководьях или на влажных берегах водоемов.

В это время происходило уменьшение интенсивности влияния ультрафиолетового излучения и повышение содержания в воздухе кислорода. Ультрафиолетовая радиация, способствовавшая формированию биологических макромолекул на начальных этапах развития жизни на Земле, в то же время выступала и в качестве фактора, ограничивающего эволюцию при отсутствии в атмосфере достаточного количества кислорода, которое необходимо для деления ядра и клетки.

900 млн лет назад, в протерозойскую эру концентрация кислорода в атмосфере составляла лишь 0,001 от современного уровня, в кембрии - 0,01, а в силуре - 0,1. Увеличение содержания кислорода коррелировало с образованием озонового слоя, задерживающего часть ультрафиолетовых лучей.

Появление наземных растений по времени совпадает с развитием метаболизма фенольных соединений, в том числе дубильных веществ, флавоноидов, антоцианов и др. Они регулируют ростовые процессы, участвуют в осуществлении защитных реакций, в том числе от мутагенных факторов, в роли которых выступают ультрафиолетовое излучение, ионизирующая радиация, некоторые химические вещества.

Вопрос о происхождении водорослей еще далек от окончательного ре-шения. Существуют различные точки зрения как на происхождение, так и на родственные отношения между типами водорослей. Палеонтология с несомненностью указывает на древность водорослей.

При изучении водорослей можно обратить внимание на наличие подвиж-ных стадий в цикле развития отдельных их представителей. Некото-рые (например, вольвоксовые из зеленых водорослей) проводят всю жизнь в подвижном состоянии. Однако и у них (например, у хламидомонады) наб-людается неподвижная стадия — пальмеллевидное состояние. По мере даль-нейшего усложнения водорослей замечается выработка неподвиж-ных форм .

Однако в цикле развития даже более организованных, неподвижных форм имеется подвижная стадия в виде зооспоры . Зооспоры указыва-ют нам на какую-то связь высших форм с просто устроенными формами, ко-торые всю жизнь проводят в подвижном состоянии.

Поэтому в начале каждого типа ставят водоросли монадной структуры и среди них те, которые обнаруживают наиболее примитивное строение.

Хризомонадовые — очень древняя группа водорослей, известная еще из докембрийских отложений. Они обнаруживают родственные связи с диа-томовыми (наличие кремневой оболочки, лейкозин) и с разножгутиковыми водорослями (окрашенные цисты, отсутствие крахмала и отложение в запас масла). Вероятно, хризомонадовые и диатомовые произошли от общего пред-ка. Среди диатомовых водорослей группа центрических более древняя (наличие подвижных сперматозоидов).

Бурые водоросли в происхождении могут быть также связаны с хризомонадовыми (общий пигмент фукоксантин, наличие ветвистых форм у хризомонад).

Красные водоросли (багрянки) увязать с другими типами водорослей достоверно невозможно.

Эвгленовые не имеют прямой связи с другими водорослями. Это также слепая ветвь эволюции. Возможно, что в происхождении они связаны с ка-кими-либо зелеными водорослями монадной структуры (наличие хлорофил-лов а и б).

То же следует сказать и о пиррофитовых водорослях . Они стоят особ-няком и не дали начала каким-либо другим водорослям.

Наиболее ясно родственные отношения прослеживаются среди зеле-ных водорослей . В основу их ставятся монадные формы из порядка воль-воксовых (политома, хламидомонада). От них произошли колониальные (гониум, эвдорина, вольвокс). Благодаря наличию неподвижных фаз в цикле развития (пальмеллевидное состояние у хламидомонады) от вольвоксовых можно перейти к хлорококковым, неподвижным в вегетативном состоянии. С хлорококковыми легко могут быть связаны другие порядки различных эволюционных направлений. Так, из одноклеточных, простейших форм раз-вились колониальные (педиаструм , водяная сеточка), через протосифон мож-но вывести порядок Siphonales, характеризующийся неклеточным строени-ем, и порядок Vaucheriales.

От хлорококковых выводится обычно и порядок Улотриксовые с нит-чатым (Ulothrix ) и далее пластинчатым (Ulva) строением тела. Порядок Кладофоровые легко увязывается с улотриксовыми. Материал с сайта

Порядок Эдогониевые, несомненно, также связан с улотриксовыми, но наличие у эдогония своеобразных сперматозоидов и особого способа деления клеток не позволяет наметить более ясных отношений с какими-либо пред-ставителями последних.

Среди харофитовых водорослей класс Конъюгаты благодаря отсутствию подвижных стадий не может быть непосредственно связан с зелеными водорослями. Наиболее вероятно их происхождение самостоятельным стволом от простейших хлоро-кокковых, рано утративших подвижность. Некоторые ботаники связыва-ют конъюгаты с простейшими амебоидными организмами.

Класс Харофициевые водоросли стоит особняком в системе водорос-лей. Это очень древние водоросли, их остатки известны из девонских отло-жений палеозойской эры. Вероятно, это боковой ствол зеленых водорослей, обособившийся от них на очень раннем этапе эволюции. Промежуточные звенья между ними вымерли.

Биологи убеждены, что с целебной силой морских водорослей не сравнится ни одно растение на суше.

Жизнь изначально зародилась в море, и эти гидробионты за период эволюции накопили беспрецедентный биологический состав. Это такие крайне необходимые человеку вещества как ламинарин, фукоидан, соли альгиновой кислоты, аминокислоты, макро- и микроэлементы.

Отечественная продукция на основе морских водорослей разрабатывалась в течение достаточно продолжительного периода. Основной целью исследований ставилось решение проблемы низкой усвояемости морской водоросли Ламинария Японика (Laminaria Japonica) и Фукуса (Fucus).

Стенки этих растений покрыты прочной целлюлозой, которую человеческой организм не способен расщепить. Поэтому усвояемость Ламинарии и Фукуса человеком не превышает 4%. Что крайне затрудняет медицинское использование водорослей.

В результате целенаправленной работы российских ученых (А.Н. Разумов, А.Г. Одинец и др.) был запатентован особый метод низкотемпературного гидролиза, позволяющий расщепить стенку водорослей, не потеряв при этом ни один полезный компонент из его состава.

На основе данной технологии был получен продукт из морских водорослей в виде биогеля, предназначенного для диетического (лечебного и профилактического) питания.

Было проведено около 20 клинических испытаний, по результатам которых биогель рекомендован в комплексной терапии при:
- заболеваниях желудочно-кишечного тракта (дисбактериоз, запоры, хронический гастрит и т.д.);
- заболеваниях щитовидной железы (гипотиреоз);
- ишемической болезни сердца;
- артериальной гипертонии;
- атеросклерозе;
- нарушениях обмена веществ;
- ослабленном иммунитете
- всех формах интоксикации

Происхождение водорослей

Эволюция » Происхождение жизни на Земле » Происхождение водорослей

К водорослям относятся низшие одноклеточные и многоклеточные растения. Различают 12 отделов водорослей: пирофитовые, криптофитовые, золотистые, диатомовые, желто-зеленые, бурые, красные, эвгленовые, харовые, прохлорофитовые, зеленые. Происхождение и ход эволюции водорослей еще не выяснены. Предполагается существование в докембрии минимум трех групп фото-трофных прокариот, использовавших в качестве донора электронов воду.

Цианобактерии, содержащие, как и хлоропласты, хлорофилл а и выделяющие при фотосинтезе кислород.
Зеленые прокариоты, обладающие хлорофиллом Ь. Предполагается, что они дали начало пластидам зеленых водорослей и эвгленовых.
Желтые прокариоты, обладавшие хлорофиллом с, дали начало пластидам дино-флагеллат, золотистых, диатомовых, бурых водорослей.
Возникновение эукариотических водорослей представляют как результат ряда эндосимбиозов между прокариотами. Пластиды зеленых и красных водорослей есть результат симбиоза фаготрофных эукариот и фототрофных прокариот. Поэтому их пластиды имеют внутреннюю оболочку (прокариотическую клеточную мембрану) и внешнюю (мембрану вакуоли).

Зеленые и красные водоросли появились около 3 млрд. лет назад. Вначале появились одноклеточные, а затем - колониальные водоросли. Около миллиарда лет назад появились многоклеточные водоросли.

Среди зеленых водорослей сохранились формы, ряд которых дает представление об усложнении организации при возникновении многоклеточности у растений: хламидомонада (1-клеточная), гониум (4-клеточная), стефаносфера (8клеточная), пандорина (16-клеточная), эудорина (32-клеточная), вольвокс (40 тыс. клеток соматических и генеративных).