단열재 격리 블록

동일한 힘을 가진 숫자를 추가합니다. 거듭제곱을 이용한 숫자의 곱셈과 나눗셈. 음수를 거듭제곱하기

거듭제곱이 있는 숫자는 다른 수량처럼 추가될 수 있다는 것이 명백합니다. , 기호와 함께 차례로 추가하여.

따라서 a 3 과 b 2 의 합은 a 3 + b 2 입니다.
a 3 - b n과 h 5 -d 4의 합은 a 3 - b n + h 5 - d 4입니다.

승산 동일한 변수의 동일한 거듭제곱더하거나 뺄 수 있습니다.

따라서 2a 2 와 3a 2 의 합은 5a 2 와 같습니다.

정사각형 두 개 a, 정사각형 a 세 개, 정사각형 a 다섯 개를 취하면 알 수 있습니다.

하지만 학위 다양한 변수그리고 다양한 학위 동일한 변수, 기호를 추가하여 구성해야 합니다.

따라서 a 2와 a 3의 합은 a 2 + a 3의 합이 됩니다.

a의 제곱과 a의 세제곱은 a의 제곱의 두 배가 아니라 a의 세제곱의 두 배와 같다는 것이 분명합니다.

a 3bn과 3a 5b 6의 합은 a 3bn + 3a 5b 6입니다.

빼기거듭제곱은 감수의 부호가 그에 따라 변경되어야 한다는 점을 제외하면 덧셈과 동일한 방식으로 수행됩니다.

또는:
2a 4 - (-6a 4) = 8a 4
3h 2b 6 - 4h 2b 6 = -h 2b 6
5(a - h) 6 - 2(a - h) 6 = 3(a - h) 6

거듭제곱

거듭제곱이 있는 숫자는 다른 수량과 마찬가지로 곱셈 기호를 사용하거나 사용하지 않고 하나씩 적어서 곱할 수 있습니다.

따라서 a 3에 b 2를 곱한 결과는 a 3 b 2 또는 aaabb입니다.

또는:
x -3 ⋅ a m = a m x -3
3a 6 y 2 ⋅ (-2x) = -6a 6 xy 2
a 2b 3 y 2 ⋅ a 3 b 2 y = a 2b 3 y 2 a 3 b 2 y

마지막 예의 결과는 동일한 변수를 추가하여 정렬할 수 있습니다.
표현식은 a 5 b 5 y 3 형식을 취합니다.

여러 숫자(변수)를 거듭제곱과 비교하면 그 중 두 개를 곱하면 결과는 다음과 같은 거듭제곱을 갖는 숫자(변수)가 된다는 것을 알 수 있습니다. 용어의 정도.

따라서 a 2 .a 3 = aa.aaa = aaaaa = a 5 입니다.

여기서 5는 곱셈 결과의 거듭제곱으로, 항의 거듭제곱의 합인 2 + 3과 같습니다.

따라서 a n .am = a m+n 입니다.

n의 경우, a는 n의 거듭제곱만큼 인수로 사용됩니다.

그리고 m은 m의 차수만큼 인수로 간주됩니다.

그렇기 때문에, 동일한 밑수를 가진 거듭제곱은 거듭제곱의 지수를 추가하여 곱할 수 있습니다.

따라서 a 2 .a 6 = a 2+6 = a 8 입니다. 그리고 x 3 .x 2 .x = x 3+2+1 = x 6 .

또는:
4an ⋅ 2an = 8a 2n
b 2 y 3 ⋅ b 4 y = b 6 y 4
(b + h - y) n ⋅ (b + h - y) = (b + h - y) n+1

(x 3 + x 2 y + xy 2 + y 3) ⋅ (x - y)를 곱합니다.
답: x 4 - y 4.
(x 3 + x - 5) ⋅ (2x 3 + x + 1)을 곱합니다.

이 규칙은 지수가 다음과 같은 숫자에도 적용됩니다. 부정적인.

1. 따라서 a -2 .a -3 = a -5 입니다. 이는 (1/aa).(1/aaa) = 1/aaaaa로 쓸 수 있습니다.

2. y -n .y -m = y -n-m .

3. a -n .am = a m-n .

a + b에 a - b를 곱하면 결과는 a 2 - b 2가 됩니다.

두 숫자의 합이나 차이를 곱한 결과는 두 숫자의 제곱의 합이나 차이와 같습니다.

두 숫자의 합과 차이를 곱하면 정사각형, 결과는 다음 숫자의 합 또는 차이와 같습니다. 네번째도.

따라서 (a - y).(a + y) = a 2 - y 2입니다.
(a 2 - y 2)⋅(a 2 + y 2) = a 4 - y 4.
(a 4 - y 4)⋅(a 4 + y 4) = a 8 - y 8.

학위구분

거듭제곱이 있는 숫자는 피제수에서 빼거나 ​​분수 형식으로 배치하여 다른 숫자처럼 나눌 수 있습니다.

따라서 a 3b 2를 b 2로 나눈 값은 a 3과 같습니다.

또는:
$\frac(9a^3y^4)(-3a^3) = -3y^4$
$\frac(a^2b + 3a^2)(a^2) = \frac(a^2(b+3))(a^2) = b + 3$
$\frac(d\cdot (a - h + y)^3)((a - h + y)^3) = d$

5를 3으로 나눈 값은 $\frac(a^5)(a^3)$과 같습니다. 그러나 이것은 2 와 같습니다. 일련의 숫자에서
a +4 , a +3 , a +2 , a +1 , a 0 , a -1 , a -2 , a -3 , a -4 .
모든 숫자는 다른 숫자로 나눌 수 있으며 지수는 다음과 같습니다. 차이점나눌 수 있는 숫자의 표시기.

동일한 밑수로 각도를 나누면 해당 지수가 뺍니다..

따라서 y 3:y 2 = y 3-2 = y 1입니다. 즉, $\frac(yyy)(yy) = y$입니다.

그리고 n+1:a = a n+1-1 = a n 입니다. 즉, $\frac(aa^n)(a) = a^n$입니다.

또는:
y 2m: y m = y m
8a n+m: 4a m = 2a n
12(b + y) n: 3(b + y) 3 = 4(b +y) n-3

이 규칙은 다음과 같은 숫자에도 적용됩니다. 부정적인각도 값.
-5를 -3으로 나눈 결과는 -2입니다.
또한, $\frac(1)(aaaaa) : \frac(1)(aaa) = \frac(1)(aaaaa).\frac(aaa)(1) = \frac(aaa)(aaaaa) = \frac (1)(aa)$.

h 2:h -1 = h 2+1 = h 3 또는 $h^2:\frac(1)(h) = h^2.\frac(h)(1) = h^3$

이러한 연산은 대수학에서 매우 널리 사용되기 때문에 곱셈과 거듭제곱의 나눗셈을 잘 익힐 필요가 있습니다.

거듭제곱이 있는 숫자를 포함하는 분수로 예제를 푸는 예

1. $\frac(5a^4)(3a^2)$로 지수를 줄입니다. 답: $\frac(5a^2)(3)$.

2. $\frac(6x^6)(3x^5)$만큼 지수를 줄입니다. 답: $\frac(2x)(1)$ 또는 2x.

3. 지수 a 2 /a 3 및 a -3 /a -4를 줄여 공통 분모로 가져옵니다.
a 2 .a -4는 a -2의 첫 번째 분자입니다.
a 3 .a -3은 a 0 = 1, 두 번째 분자입니다.
a 3 .a -4 는 공통분자인 -1 입니다.
단순화 후: a -2 /a -1 및 1/a -1 .

4. 지수 2a 4 /5a 3 및 2 /a 4를 줄여 공통 분모로 가져옵니다.
답: 2a 3 /5a 7 및 5a 5 /5a 7 또는 2a 3 /5a 2 및 5/5a 2.

5. (a 3 + b)/b 4에 (a - b)/3을 곱합니다.

6. (a 5 + 1)/x 2에 (b 2 - 1)/(x + a)를 곱합니다.

7. b 4 /a -2 에 h -3 /x 및 a n /y -3 을 곱합니다.

8. 4 /y 3 을 3 /y 2 로 나눕니다. 답: a/y.

9. (h 3 - 1)/d 4를 (d n + 1)/h로 나눕니다.

힘을 곱하는 방법? 어떤 힘은 증폭될 수 있고 어떤 힘은 증폭될 수 없습니까? 숫자에 거듭제곱을 곱하는 방법은 무엇입니까?

대수학에서는 두 가지 경우에 거듭제곱의 곱을 찾을 수 있습니다.

1) 학위의 기초가 동일한 경우

2) 학위의 지표가 동일한 경우.

동일한 밑수로 거듭제곱을 곱할 때 밑수는 그대로 두고 지수를 더해야 합니다.

동일한 지수로 거듭제곱을 곱할 때 일반 지표대괄호에서 꺼낼 수 있습니다.

구체적인 예를 사용하여 거듭제곱을 곱하는 방법을 살펴보겠습니다.

단위는 지수로 작성되지 않지만 거듭제곱을 곱할 때 다음을 고려합니다.

곱할 때, 거듭제곱은 얼마든지 있을 수 있습니다. 문자 앞에 곱셈 기호를 쓸 필요는 없다는 점을 기억해야 합니다.

표현식에서는 지수화가 먼저 수행됩니다.

숫자에 거듭제곱을 곱해야 하는 경우 먼저 거듭제곱을 수행한 다음 곱셈을 수행해야 합니다.

www.algebraclass.ru

거듭제곱의 덧셈, 뺄셈, 곱셈, 나눗셈

힘의 덧셈과 뺄셈

거듭제곱이 있는 숫자는 다른 수량처럼 추가될 수 있다는 것이 명백합니다. , 기호와 함께 차례로 추가하여.

따라서 a 3 과 b 2 의 합은 a 3 + b 2 입니다.
a 3 - b n과 h 5 -d 4의 합은 a 3 - b n + h 5 - d 4입니다.

승산 동일한 변수의 동일한 거듭제곱더하거나 뺄 수 있습니다.

따라서 2a 2 와 3a 2 의 합은 5a 2 와 같습니다.

정사각형 두 개 a, 정사각형 a 세 개, 정사각형 a 다섯 개를 취하면 알 수 있습니다.

하지만 학위 다양한 변수그리고 다양한 학위 동일한 변수, 기호를 추가하여 구성해야 합니다.

따라서 a 2와 a 3의 합은 a 2 + a 3의 합이 됩니다.

a의 제곱과 a의 세제곱은 a의 제곱의 두 배가 아니라 a의 세제곱의 두 배와 같다는 것이 분명합니다.

a 3bn과 3a 5b 6의 합은 a 3bn + 3a 5b 6입니다.

빼기거듭제곱은 감수의 부호가 그에 따라 변경되어야 한다는 점을 제외하면 덧셈과 동일한 방식으로 수행됩니다.

또는:
2a 4 - (-6a 4) = 8a 4
3h 2b 6 — 4h 2b 6 = -h 2b 6
5(a - h) 6 - 2(a - h) 6 = 3(a - h) 6

거듭제곱

거듭제곱이 있는 숫자는 다른 수량과 마찬가지로 곱셈 기호를 사용하거나 사용하지 않고 하나씩 적어서 곱할 수 있습니다.

따라서 a 3에 b 2를 곱한 결과는 a 3 b 2 또는 aaabb입니다.

또는:
x -3 ⋅ a m = a m x -3
3a 6 y 2 ⋅ (-2x) = -6a 6 xy 2
a 2b 3 y 2 ⋅ a 3 b 2 y = a 2b 3 y 2 a 3 b 2 y

마지막 예의 결과는 동일한 변수를 추가하여 정렬할 수 있습니다.
표현식은 a 5 b 5 y 3 형식을 취합니다.

여러 숫자(변수)를 거듭제곱과 비교하면 그 중 두 개를 곱하면 결과는 다음과 같은 거듭제곱을 갖는 숫자(변수)가 된다는 것을 알 수 있습니다. 용어의 정도.

따라서 a 2 .a 3 = aa.aaa = aaaaa = a 5 입니다.

여기서 5는 곱셈 결과의 거듭제곱으로, 항의 거듭제곱의 합인 2 + 3과 같습니다.

따라서 a n .am = a m+n 입니다.

n의 경우, a는 n의 거듭제곱만큼 인수로 사용됩니다.

그리고 m은 m의 차수만큼 인수로 간주됩니다.

그렇기 때문에, 동일한 밑수를 가진 거듭제곱은 거듭제곱의 지수를 추가하여 곱할 수 있습니다.

따라서 a 2 .a 6 = a 2+6 = a 8 입니다. 그리고 x 3 .x 2 .x = x 3+2+1 = x 6 .

또는:
4an ⋅ 2an = 8a 2n
b 2 y 3 ⋅ b 4 y = b 6 y 4
(b + h - y) n ⋅ (b + h - y) = (b + h - y) n+1

(x 3 + x 2 y + xy 2 + y 3) ⋅ (x - y)를 곱합니다.
답: x 4 - y 4.
(x 3 + x – 5) ⋅ (2x 3 + x + 1)을 곱합니다.

이 규칙은 지수가 다음과 같은 숫자에도 적용됩니다. 부정적인.

1. 따라서 a -2 .a -3 = a -5 입니다. 이는 (1/aa).(1/aaa) = 1/aaaaa로 쓸 수 있습니다.

2. y -n .y -m = y -n-m .

3. a -n .am = a m-n .

a + b에 a - b를 곱하면 결과는 a 2 - b 2가 됩니다.

두 숫자의 합이나 차이를 곱한 결과는 두 숫자의 제곱의 합이나 차이와 같습니다.

두 숫자의 합과 차이를 곱하면 정사각형, 결과는 다음 숫자의 합 또는 차이와 같습니다. 네번째도.

따라서 (a - y).(a + y) = a 2 - y 2입니다.
(a 2 - y 2)⋅(a 2 + y 2) = a 4 - y 4.
(a 4 - y 4)⋅(a 4 + y 4) = a 8 - y 8.

학위구분

거듭제곱이 있는 숫자는 피제수에서 빼거나 ​​분수 형식으로 배치하여 다른 숫자처럼 나눌 수 있습니다.

따라서 a 3b 2를 b 2로 나눈 값은 a 3과 같습니다.

5를 3으로 나눈 값은 $\frac처럼 보입니다. $. 그러나 이것은 2 와 같습니다. 일련의 숫자에서
a +4 , a +3 , a +2 , a +1 , a 0 , a -1 , a -2 , a -3 , a -4 .
모든 숫자는 다른 숫자로 나눌 수 있으며 지수는 다음과 같습니다. 차이점나눌 수 있는 숫자의 표시기.

동일한 밑수로 각도를 나누면 해당 지수가 뺍니다..

따라서 y 3:y 2 = y 3-2 = y 1입니다. 즉, $\frac = y$입니다.

그리고 n+1:a = a n+1-1 = a n 입니다. 즉, $\frac = a^n$입니다.

또는:
y 2m: y m = y m
8a n+m: 4a m = 2a n
12(b + y) n: 3(b + y) 3 = 4(b +y) n-3

이 규칙은 다음과 같은 숫자에도 적용됩니다. 부정적인각도 값.
-5를 -3으로 나눈 결과는 -2입니다.
또한, $\frac: \frac = \frac .\frac = \frac = \frac $.

h 2:h -1 = h 2+1 = h 3 또는 $h^2:\frac = h^2.\frac = h^3$

이러한 연산은 대수학에서 매우 널리 사용되기 때문에 곱셈과 거듭제곱의 나눗셈을 잘 익힐 필요가 있습니다.

거듭제곱이 있는 숫자를 포함하는 분수로 예제를 푸는 예

1. $\frac $만큼 지수를 줄입니다. 답: $\frac $.

2. 지수를 $\frac$만큼 줄입니다. 답: $\frac$ 또는 2x.

3. 지수 a 2 /a 3 및 a -3 /a -4를 줄여 공통 분모로 가져옵니다.
a 2 .a -4는 a -2의 첫 번째 분자입니다.
a 3 .a -3은 a 0 = 1, 두 번째 분자입니다.
a 3 .a -4 는 공통분자인 -1 입니다.
단순화 후: a -2 /a -1 및 1/a -1 .

4. 지수 2a 4 /5a 3 및 2 /a 4를 줄여 공통 분모로 가져옵니다.
답: 2a 3 /5a 7 및 5a 5 /5a 7 또는 2a 3 /5a 2 및 5/5a 2.

5. (a 3 + b)/b 4에 (a - b)/3을 곱합니다.

6. (a 5 + 1)/x 2에 (b 2 - 1)/(x + a)를 곱합니다.

7. b 4 /a -2 에 h -3 /x 및 a n /y -3 을 곱합니다.

8. 4 /y 3 을 3 /y 2 로 나눕니다. 답: a/y.

정도의 속성

이번 강의에서는 우리가 이해할 것임을 상기시켜드립니다. 도의 속성자연 지표와 0이 있습니다. 유리수 지수와 그 속성을 갖는 거듭제곱은 8학년 수업에서 논의됩니다.

자연 지수가 있는 거듭제곱은 거듭제곱이 있는 예제에서 계산을 단순화할 수 있는 몇 가지 중요한 속성을 갖습니다.

부동산 번호 1
권력의 산물

동일한 밑수를 사용하여 거듭제곱을 곱할 때 밑수는 변경되지 않고 그대로 유지되며 거듭제곱의 지수가 추가됩니다.

a m · an n = a m + n, 여기서 "a"는 임의의 숫자이고 "m", "n"은 임의의 자연수입니다.

이러한 거듭제곱의 속성은 세 개 이상의 거듭제곱의 곱에도 적용됩니다.

  • 표현을 단순화하세요.
    ㄴ 2 ㄴ 3 ㄴ 4 ㄴ 5 = ㄴ 1 + 2 + 3 + 4 + 5 = ㄴ 15
  • 학위로 제시하세요.
    6 15 36 = 6 15 6 2 = 6 15 6 2 = 6 17
  • 학위로 제시하세요.
    (0.8) 3 · (0.8) 12 = (0.8) 3 + 12 = (0.8) 15
  • 지정된 속성에서 우리는 동일한 기반을 가진 거듭제곱의 곱셈에 대해서만 이야기했습니다.. 추가에는 적용되지 않습니다.

    합(3 3 + 3 2)을 3 5로 바꿀 수 없습니다. 이것은 이해할 수 있습니다
    (3 3 + 3 2) = (27 + 9) = 36, 3 5 = 243을 계산합니다.

    부동산 번호 2
    부분 학위

    동일한 밑수로 거듭제곱을 나누는 경우 밑수는 변경되지 않고 그대로 유지되며 피제수 지수에서 제수의 지수를 뺍니다.

  • 몫을 거듭제곱으로 쓰세요
    (2b) 5: (2b) 3 = (2b) 5 − 3 = (2b) 2
  • 믿다.

    11 3 − 2 4 2 − 1 = 11 4 = 44
    예. 방정식을 풀어보세요. 우리는 몫의 거듭제곱의 속성을 사용합니다.
    3 8: 티 = 3 4

    답: t = 3 4 = 81

    속성 1번과 2번을 사용하면 표현식을 쉽게 단순화하고 계산을 수행할 수 있습니다.

      예. 표현을 단순화하세요.
      4 5m + 6 4m + 2: 4 4m + 3 = 4 5m + 6 + m + 2: 4 4m + 3 = 4 6m + 8 − 4m − 3 = 4 2m + 5

    예. 지수의 속성을 사용하여 표현식의 값을 찾습니다.

    2 11 − 5 = 2 6 = 64

    속성 2에서는 동일한 기반으로 권력을 나누는 것에 대해서만 이야기했다는 점에 유의하세요.

    차이(4 3 −4 2)를 4 1로 대체할 수 없습니다. (4 3 −4 2) = (64 − 16) = 48, 4 1 = 4를 계산하면 이해할 수 있습니다.

    부동산 번호 3
    학위를 힘으로 올리기

    도를 거듭제곱할 때 도의 밑수는 변경되지 않고 지수는 곱해집니다.

    (an) m = an · m, 여기서 "a"는 임의의 숫자이고 "m", "n"은 임의의 자연수입니다.


    다른 학위 속성과 마찬가지로 속성 번호 4도 역순으로 적용됩니다.

    (a n b n)= (a b) n

    즉, 동일한 지수로 거듭제곱을 곱하려면 밑수를 곱하되 지수는 변경하지 않고 그대로 두십시오.

  • 예. 믿다.
    2 4 5 4 = (2 5) 4 = 10 4 = 10,000
  • 예. 믿다.
    0.5 16 2 16 = (0.5 2) 16 = 1
  • 더 많은 복잡한 예다른 밑수와 다른 지수를 가진 거듭제곱에 대해 곱셈과 나눗셈을 수행해야 하는 경우가 있을 수 있습니다. 이 경우 다음을 수행하는 것이 좋습니다.

    예를 들어, 4 5 3 2 = 4 3 4 2 3 2 = 4 3 (4 3) 2 = 64 12 2 = 64 144 = 9216

    소수점 이하 자릿수를 거듭제곱하는 예입니다.

    4 21 (−0.25) 20 = 4 4 20 (−0.25) 20 = 4 (4 (−0.25)) 20 = 4 (−1) 20 = 4 1 = 4

    속성 5
    몫의 거듭제곱(분수)

    몫을 거듭제곱하려면 피제수와 제수를 별도로 이 거듭제곱에 올리고 첫 번째 결과를 두 번째 결과로 나눌 수 있습니다.

    (a: b) n = a n: b n, 여기서 "a", "b"는 임의입니다. 유리수, b ≠ 0, n - 모두 자연수.

  • 예. 표현을 거듭제곱의 몫으로 표현하세요.
    (5: 3) 12 = 5 12: 3 12
  • 몫은 분수로 표현될 수 있다는 점을 상기시켜 드립니다. 따라서 다음 페이지에서 분수를 거듭제곱하는 주제에 대해 더 자세히 설명하겠습니다.

    힘과 뿌리

    힘과 뿌리를 가진 작전. 부정적인 정도 ,

    0과 분수 지시자. 의미가 없는 표현에 대해서.

    학위를 사용한 작업.

    1. 동일한 밑수로 거듭제곱을 곱하면 해당 지수가 추가됩니다.

    오전 · n = a m + n .

    2. 같은 밑수로 도를 나눌 때 그 지수는 공제된다 .

    3. 두 개 이상의 요인의 곱의 정도는 이러한 요인의 정도의 곱과 같습니다.

    4. 비율(분수)의 차수는 피제수(분자)와 제수(분모)의 차수 비율과 같습니다.

    (a/b) n = a n / b n .

    5. 거듭제곱을 거듭제곱할 때 해당 지수는 다음과 같이 곱해집니다.

    위의 모든 수식은 왼쪽에서 오른쪽으로 또는 그 반대로 양방향으로 읽고 실행됩니다.

    예 (2 3 5 / 15)² = 2² · 3² · 5² / 15² = 900 / 225 = 4 .

    뿌리가 있는 작업. 아래의 모든 수식에서 기호는 다음을 의미합니다. 산술 루트(급진적 표현은 긍정적입니다).

    1. 여러 요인의 곱의 근은 다음 요인의 근의 곱과 같습니다.

    2. 비율의 근은 배당금과 제수의 근의 비율과 같습니다.

    3. 뿌리를 1권으로 올릴 때에는 이 권수로 올리면 충분하다. 근수:

    4. 근의 차수를 m배로 늘리고 동시에 근수를 m승으로 올리면 근의 값은 변하지 않습니다.

    5. 근의 차수를 m배만큼 줄이고 동시에 근수의 m차근을 추출하면 근의 값은 변경되지 않습니다.


    학위의 개념을 확장합니다. 지금까지 우리는 자연 지수로만 학위를 고려했습니다. 그러나 힘과 뿌리를 가진 작전은 다음과 같은 결과를 초래할 수도 있습니다. 부정적인, 그리고 분수지표. 이러한 모든 지수에는 추가 정의가 필요합니다.

    음수 지수가 있는 학위입니다. 음(정수) 지수를 갖는 특정 숫자의 거듭제곱은 음의 지수의 절대값과 동일한 지수를 갖는 동일한 숫자의 거듭제곱으로 나눈 값으로 정의됩니다.

    이제 공식 오전 : = 오전 - n뿐만 아니라 사용할 수 있습니다 , 이상 N, 뿐만 아니라 , 미만 N .

    에이 4: 에이 7 =a 4 — 7 =a — 3 .

    우리가 공식을 원한다면 오전 : = 오전N그때는 공평했어 m = n, 우리는 0도의 정의가 필요합니다.

    지수가 0인 학위입니다. 지수가 0인 0이 아닌 숫자의 거듭제곱은 1입니다.

    예. 2 0 = 1, ( 5) 0 = 1, ( 3 / 5) 0 = 1.

    분수 지수가 있는 학위입니다. 실수 a를 m/n의 거듭제곱으로 올리려면 이 숫자 a의 m제곱의 n제곱근을 추출해야 합니다.

    의미가 없는 표현에 대해서. 이런 표현이 여러개 있습니다.

    어디 에이 ≠ 0 , 존재하지 않습니다.

    사실, 우리가 가정한다면 엑스가 특정 숫자이면 나눗셈 연산의 정의에 따라 다음과 같은 결과를 얻을 수 있습니다. 에이 = 0· 엑스, 즉. 에이= 0, 이는 조건과 모순됩니다. 에이 ≠ 0

    어떤 숫자라도.

    실제로 이 표현식이 어떤 숫자와 같다고 가정하면 엑스, 나누기 연산의 정의에 따르면 다음과 같습니다. 0 = 0 · 엑스. 그러나 이러한 평등은 다음과 같은 경우에 발생합니다. 임의의 숫자 x, 이는 입증이 필요한 것이었습니다.

    0 0 — 어떤 숫자라도.

    해결책 세 가지 주요 사례를 고려해 보겠습니다.

    1) 엑스 = 0 이 값은 이 방정식을 만족하지 않습니다.

    2) 언제 엑스> 0 우리는 다음을 얻습니다: 더블 엑스= 1, 즉 1 = 1, 즉

    무엇 엑스– 임의의 숫자; 하지만 그 점을 고려하면

    우리의 경우 엑스> 0, 답은 엑스 > 0 ;

    다양한 기준으로 거듭제곱을 곱하는 규칙

    합리적 지표를 사용한 학위,

    전력 함수 IV

    § 69. 동일한 기반을 사용한 거듭제곱 및 분할

    정리 1.동일한 밑수로 거듭제곱을 곱하려면 지수를 더하고 밑수는 그대로 두는 것으로 충분합니다.

    증거.학위의 정의에 따르면

    2 2 2 3 = 2 5 = 32; (-3) (-3) 3 = (-3) 4 = 81.

    우리는 두 힘의 곱을 살펴보았습니다. 사실, 입증된 속성은 동일한 기반을 가진 여러 권력에 대해 적용됩니다.

    정리 2.동일한 기준으로 거듭제곱을 나누기 위해 배당 지수가 제수 지수보다 큰 경우 배당 지수에서 제수 지수를 빼고 기준은 그대로 두는 것으로 충분합니다. ~에 티 > 피

    (에이 =/= 0)

    증거.한 숫자를 다른 숫자로 나눈 몫은 제수를 곱할 때 배당금이 되는 숫자라는 점을 기억하세요. 그러므로 다음 공식을 증명하십시오. 에이 =/= 0, 공식을 증명하는 것과 같습니다

    만약에 티 > 피 , 그 다음 숫자 t - p 자연스러울 것이다; 그러므로 정리 1에 의해

    정리 2가 입증되었습니다.

    공식은 다음과 같습니다.

    우리는 다음과 같은 가정 하에서만 그것을 증명했습니다. 티 > 피 . 따라서 입증된 내용을 바탕으로 다음과 같은 결론을 도출하는 것은 아직 불가능합니다.

    또한, 음의 지수를 갖는 차수를 아직 고려하지 않았으며, 수식 3에 어떤 의미를 부여할 수 있는지 아직 알 수 없습니다. - 2 .

    정리 3. 도를 거듭제곱으로 올리려면 지수를 곱하고 도의 밑을 동일하게 유지하면 충분합니다., 즉

    증거.이 섹션의 차수의 정의와 정리 1을 사용하여 다음을 얻습니다.

    Q.E.D.

    예를 들어 (2 3) 2 = 2 6 = 64;

    518(구두) 결정하다 엑스 방정식에서:

    1) 2 2 2 2 3 2 4 2 5 2 6 = 2 엑스 ; 3) 4 2 4 4 4 6 4 8 4 10 = 2 엑스 ;

    2) 3 3 3 3 5 3 7 3 9 = 3 엑스 ; 4) 1 / 5 1 / 25 1 / 125 1 / 625 = 1 / 5 엑스 .

    519. (세트 번호) 단순화:

    520. (세트 번호) 단순화:

    521. 다음 표현을 동일한 기준을 가진 각도 형태로 제시하십시오.

    1) 32 및 64; 3) 8 5 및 16 3; 5) 4 100 및 32 50;

    2) -1000과 100; 4) -27 및 -243; 6) 81 75 8 200 및 3 600 4 150.

    대수학과 모든 수학의 주요 특징 중 하나는 학위입니다. 물론 21세기에는 모든 계산을 온라인 계산기로 할 수 있지만 스스로 배우는 것이 두뇌 발달에 더 좋습니다.

    이 기사에서는 이 정의와 관련된 가장 중요한 문제를 고려할 것입니다. 즉, 그것이 일반적으로 무엇인지, 주요 기능은 무엇인지, 수학에는 어떤 속성이 있는지 이해해 봅시다.

    계산의 모양과 기본 공식이 무엇인지 예를 살펴 보겠습니다. 수량의 주요 유형과 다른 기능과의 차이점을 살펴보겠습니다.

    이 수량을 이용하여 다양한 문제를 해결하는 방법을 알아봅시다. 우리는 0의 거듭제곱, 비합리적, 부정적 등으로 올리는 방법을 예제와 함께 보여 드리겠습니다.

    온라인 지수 계산기

    숫자의 거듭제곱이란 무엇인가요?

    "숫자의 거듭제곱"이라는 표현은 무엇을 의미합니까?

    숫자의 거듭제곱 n은 크기 인수를 n번 연속으로 곱한 것입니다.

    수학적으로는 다음과 같습니다.

    a n = a * a * a * ...an .

    예를 들어:

    • 2 3 = 3차에서는 2입니다. = 2 * 2 * 2 = 8;
    • 4 2 = 4단계. 2 = 4 * 4 = 16;
    • 5 4 = 5단계. 4개 = 5*5*5*5 = 625;
    • 10 5 = 5단계로 10입니다. = 10 * 10 * 10 * 10 * 10 = 100000;
    • 10 4 = 4단계로 10입니다. = 10 * 10 * 10 * 10 = 10000.

    아래에는 1부터 10까지의 정사각형과 큐브가 포함된 표가 있습니다.

    1에서 10까지의 각도 표

    다음은 자연수를 양의 거듭제곱("1에서 100까지")으로 올린 결과입니다.

    Ch-lo 2위. 3단계
    1 1 1
    2 4 8
    3 9 27
    4 16 64
    5 25 125
    6 36 216
    7 49 343
    8 64 512
    9 81 279
    10 100 1000

    도의 속성

    그러한 특징은 무엇입니까 수학 함수? 기본 속성을 살펴보겠습니다.

    과학자들은 다음과 같은 사실을 확립했습니다. 모든 학위의 특징적인 징후:

    • n * a m = (a) (n+m) ;
    • n: a m = (a) (n-m) ;
    • (a b) m =(a) (b*m) .

    예를 들어 확인해 보겠습니다.

    2 3 * 2 2 = 8 * 4 = 32. 반면, 2 5 = 2 * 2 * 2 * 2 * 2 =32입니다.

    마찬가지로: 2 3: 2 2 = 8 / 4 =2. 그렇지 않으면 2 3-2 = 2 1 =2입니다.

    (2 3) 2 = 8 2 = 64. 다르면 어떻게 되나요? 2 6 = 2 * 2 * 2 * 2 * 2 * 2 = 32 * 2 = 64.

    보시다시피 규칙이 작동합니다.

    하지만 어떨까요? 덧셈과 뺄셈으로? 간단합니다. 지수화가 먼저 수행된 다음 덧셈과 뺄셈이 수행됩니다.

    예를 살펴보겠습니다:

    • 3 3 + 2 4 = 27 + 16 = 43;
    • 5 2 – 3 2 = 25 – 9 = 16. 참고: 먼저 빼면 규칙이 적용되지 않습니다: (5 – 3) 2 = 2 2 = 4.

    하지만 이 경우 괄호 안에 동작이 있으므로 먼저 덧셈을 계산해야 합니다: (5 + 3) 3 = 8 3 = 512.

    생산 방법 더 복잡한 경우의 계산? 순서는 동일합니다.

    • 대괄호가 있으면 그 대괄호부터 시작해야 합니다.
    • 그런 다음 지수화;
    • 그런 다음 곱셈과 나눗셈의 연산을 수행합니다.
    • 덧셈, 뺄셈 후.

    모든 학위의 특징이 아닌 특정 속성이 있습니다.

    1. 숫자 a의 m차 n번째 루트는 다음과 같이 작성됩니다: a m / n.
    2. 분수를 거듭제곱할 때: 분자와 분모 모두 이 절차를 따릅니다.
    3. 서로 다른 숫자의 곱을 거듭제곱할 때, 표현식은 주어진 숫자에 대한 곱셈에 해당합니다. 즉, (a * b) n = a n * b n 입니다.
    4. 숫자를 음수로 올리려면 1을 같은 세기의 숫자로 나누어야 하지만 "+" 기호가 있어야 합니다.
    5. 분수의 분모가 음의 거듭제곱인 경우, 이 표현식은 분자와 분모의 양의 거듭제곱을 곱한 것과 같습니다.
    6. 0 = 1의 거듭제곱과 의 거듭제곱에 해당하는 숫자입니다. 1 = 자신에게.

    이러한 규칙은 어떤 경우에는 중요합니다. 아래에서 더 자세히 살펴보겠습니다.

    음수 지수가 있는 학위

    마이너스 등급으로 무엇을 해야 합니까? 즉, 지표가 음수일 때?

    속성 4와 5를 기반으로 함(위의 내용 참조), 그것은 밝혀졌다:

    A(-n) = 1/An, 5(-2) = 1/5 2 = 1/25.

    그 반대의 경우도 마찬가지입니다.

    1 / A (-n) = A n, 1 / 2 (-3) = 2 3 = 8.

    분수라면 어떨까요?

    (A/B) (-n) = (B/A)n, (3/5) (-2) = (5/3) 2 = 25/9.

    자연 지표가 있는 정도

    이는 정수와 동일한 지수를 갖는 정도로 이해됩니다.

    기억해야 할 사항:

    0 = 1, 10 = 1; 2 0 = 1; 3.15 0 = 1; (-4) 0 = 1...등등.

    A 1 = A, 1 1 = 1; 2 1 = 2; 3 1 = 3...등등.

    또한 (-a) 2 n +2 , n=0, 1, 2...이면 결과는 "+" 기호가 됩니다. 음수가 홀수로 거듭제곱되면 그 반대도 마찬가지입니다.

    일반적인 속성과 위에서 설명한 모든 특정 기능도 해당 속성의 특징입니다.

    분수도

    이 유형은 A m / n 구성표로 작성할 수 있습니다. 다음과 같이 읽습니다: 숫자 A의 m제곱의 n제곱입니다.

    분수 표시기로 원하는 것은 무엇이든 할 수 있습니다. 줄이기, 여러 부분으로 나누기, 다른 거듭제곱으로 올리기 등이 가능합니다.

    무리수 지수가 있는 정도

    α를 무리수로, A ˃ 0으로 설정합니다.

    이러한 지표를 통해 학위의 본질을 이해하려면, 가능한 다양한 사례를 살펴보겠습니다.

    • A = 1. 결과는 1과 같습니다. 공리가 있으므로 모든 거듭제곱에서 1은 1과 같습니다.

    А r 1 ˂ А α ˂ А r 2 , r 1 ˂ r 2 – 유리수;

    • 0˂A˂1.

    이 경우 두 번째 단락과 동일한 조건에서 반대 방향입니다. Ar 2 ˂ A α ˂ A r 1.

    예를 들어 지수는 숫자 π입니다.합리적입니다.

    r 1 – 이 경우에는 3과 같습니다.

    r 2 – 4와 같습니다.

    그러면 A = 1이면 1π = 1입니다.

    A = 2, 그러면 2 3 ˂ 2 π ˂ 2 4, 8 ˂ 2 π ˂ 16.

    A = 1/2, 그다음 (½) 4 ˂ (½) π ˂ (½) 3, 1/16 ˂ (½) π ˂ 1/8.

    이러한 학위는 위에서 설명한 모든 수학적 연산과 특정 속성이 특징입니다.

    결론

    요약해 보겠습니다. 이러한 수량은 무엇에 필요한가요? 이러한 기능의 장점은 무엇입니까? 물론, 우선 계산을 최소화하고, 알고리즘을 단축하고, 데이터를 체계화하는 등의 작업을 수행할 수 있기 때문에 예제를 풀 때 수학자 및 프로그래머의 삶을 단순화합니다.

    이 지식이 또 어디에 유용할 수 있습니까? 모든 업무 전문 분야: 의학, 약리학, 치과, 건축, 기술, 엔지니어링, 디자인 등

    수학에서 학위의 개념은 7학년 대수학 수업에서 소개됩니다. 그리고 이후 수학을 공부하는 전체 과정에서 이 개념은 다양한 형태로 적극적으로 사용됩니다. 학위는 값을 암기하고 정확하고 빠르게 계산하는 능력이 필요한 다소 어려운 주제입니다. 학위를 더 빠르고 효율적으로 작업하기 위해 수학자들은 학위 속성을 생각해 냈습니다. 대규모 계산을 줄이고 대규모 예제를 어느 정도 단일 숫자로 변환하는 데 도움이 됩니다. 속성이 그리 많지 않으며 모두 기억하기 쉽고 실제로 적용하기 쉽습니다. 따라서 이 기사에서는 학위의 기본 속성과 적용 위치에 대해 설명합니다.

    정도의 속성

    동일한 염기를 갖는 도의 속성을 포함하여 도의 12가지 속성을 살펴보고 각 속성에 대한 예를 들어보겠습니다. 이러한 각 속성은 문제를 더 빠르게 해결하는 데 도움이 되며 수많은 계산 오류로부터도 벗어날 수 있습니다.

    1번째 속성.

    많은 사람들이 이 속성을 잊어버리고 0의 거듭제곱을 0으로 나타내는 실수를 저지르는 경우가 많습니다.

    2번째 속성.

    3번째 속성.

    이 속성은 숫자를 곱할 때만 사용할 수 있으며 합산할 때는 작동하지 않습니다. 그리고 우리는 이것과 다음 속성이 동일한 기반을 가진 권력에만 적용된다는 것을 잊어서는 안됩니다.

    4번째 속성.

    분모의 숫자를 음수로 올리면 뺄 때 분모의 차수를 괄호 안에 넣어 추가 계산에서 부호를 올바르게 변경합니다.

    이 속성은 나눌 때만 적용되고, 빼는 경우에는 적용되지 않습니다!

    5번째 속성.

    6번째 속성.

    이 속성은 다음에도 적용될 수 있습니다. 뒷면. 단위를 숫자로 어느 정도 나눈 값은 그 숫자의 마이너스 제곱입니다.

    7번째 속성.

    이 속성은 합계와 차이에 적용할 수 없습니다! 합이나 차이를 거듭제곱하는 것은 거듭제곱 속성보다는 축약된 곱셈 공식을 사용합니다.

    8번째 속성.

    9번째 속성.

    이 속성은 분자가 1인 분수 거듭제곱에 적용됩니다. 공식은 동일하며, 거듭제곱의 분모에 따라 근의 거듭제곱만 변경됩니다.

    이 속성은 반대 방향으로도 자주 사용됩니다. 숫자의 거듭제곱의 근은 이 숫자를 근의 거듭제곱으로 나눈 1의 거듭제곱으로 나타낼 수 있습니다. 이 속성은 숫자의 근을 추출할 수 없는 경우에 매우 유용합니다.

    10번째 속성.

    이 속성은 제곱근과 2승에만 적용되는 것이 아닙니다. 뿌리의 정도와 이 뿌리가 올라간 정도가 일치한다면 대답은 급진적인 표현이 될 것입니다.

    11번째 부동산입니다.

    엄청난 계산을 하지 않으려면 문제를 풀 때 이 속성을 제때에 볼 수 있어야 합니다.

    12번째 부동산.

    이러한 각 속성은 작업에서 두 ​​번 이상 나타날 수 있습니다. 순수한 형태, 일부 변환과 다른 공식 적용이 필요할 수 있습니다. 따라서 올바른 결정을 내리려면 다른 수학적 지식을 연습하고 통합하는 데 필요한 속성만 아는 것만으로는 충분하지 않습니다.

    권한의 적용과 그 속성

    그들은 대수학과 기하학에 적극적으로 사용됩니다. 수학 학위는 별개의 중요한 위치를 차지합니다. 그들의 도움으로 지수 방정식과 부등식이 해결되고 수학의 다른 분야와 관련된 방정식과 예는 종종 거듭제곱으로 인해 복잡해집니다. 거듭제곱은 크고 긴 계산을 피하는 데 도움이 되며 축약하고 계산하기가 더 쉽습니다. 그러나 큰 힘이나 큰 수의 힘으로 작업하려면 힘의 속성을 알아야 할뿐만 아니라 기반을 유능하게 사용하고 확장하여 작업을 더 쉽게 만들 수 있어야 합니다. 편의상 숫자의 거듭제곱의 의미도 알아야 합니다. 이렇게 하면 해결 시간이 줄어들고 긴 계산이 필요하지 않습니다.

    정도의 개념은 로그에서 특별한 역할을 합니다. 로그는 본질적으로 숫자의 거듭제곱이기 때문입니다.

    축약된 곱셈 공식은 거듭제곱 사용의 또 다른 예입니다. 정도의 속성은 사용할 수 없습니다. 특수 규칙에 따라 확장되지만 각 약식 곱셈 공식에는 항상 정도가 있습니다.

    학위는 물리학과 컴퓨터 과학 분야에도 적극적으로 사용됩니다. SI 시스템으로의 모든 변환은 거듭제곱을 사용하여 이루어지며, 앞으로 문제를 해결할 때 거듭제곱의 속성을 사용합니다. 컴퓨터 과학에서는 계산의 편의와 숫자 인식의 단순화를 위해 2의 거듭제곱이 적극적으로 사용됩니다. 물리학에서와 마찬가지로 측정 단위 변환이나 문제 계산을 위한 추가 계산은 각도 속성을 사용하여 발생합니다.

    학위는 천문학에서도 매우 유용합니다. 여기서는 학위 속성의 사용을 거의 볼 수 없지만 학위 자체는 다양한 양과 거리의 표기를 단축하기 위해 적극적으로 사용됩니다.

    도는 면적, 부피, 거리를 계산할 때 일상 생활에서도 사용됩니다.

    학위는 모든 과학 분야에서 매우 크고 작은 양을 기록하는 데 사용됩니다.

    지수 방정식과 부등식

    도의 속성은 지수 방정식과 부등식에서 정확하게 특별한 위치를 차지합니다. 이러한 작업은 학교 과정과 시험 모두에서 매우 일반적입니다. 모두 학위의 속성을 적용하여 해결됩니다. 미지의 것은 항상 정도 자체에서 발견되므로 모든 속성을 알고 그러한 방정식이나 부등식을 해결하는 것은 어렵지 않습니다.

    수업 내용

    학위란 무엇입니까?

    여러 동일한 요소의 곱이라고 합니다. 예를 들어:

    2×2×2

    이 표현식의 값은 8입니다.

    2 × 2 × 2 = 8

    이 등식의 왼쪽은 더 짧게 만들 수 있습니다. 먼저 반복 요소를 기록하고 그 위에 반복 횟수를 표시하십시오. 반복 요소 이 경우이것은 2입니다. 세 번 반복됩니다. 따라서 우리는 둘 위에 3을 씁니다.

    2 3 = 8

    이 표현은 다음과 같습니다: “ 2의 3제곱은 8입니다." 또는 " 2의 세제곱은 8이다."

    동일한 인수를 곱하는 표기법의 짧은 형식이 더 자주 사용됩니다. 따라서 숫자 위에 다른 숫자가 쓰여지면 이는 여러 동일한 요소의 곱셈임을 기억해야 합니다.

    예를 들어, 5 3이라는 표현이 주어지면 이 표현은 5 × 5 × 5를 쓰는 것과 동일하다는 점을 명심해야 합니다.

    반복되는 숫자를 이라고 합니다. 학위 기준. 5 3이라는 수식에서 거듭제곱의 밑수는 5입니다.

    그리고 숫자 5 위에 적힌 숫자를 이라고 합니다. 멱지수. 5 3 수식에서 지수는 숫자 3이다. 지수는 지수의 밑이 몇 번 반복되는지를 나타낸다. 우리의 경우 5진법이 3번 반복됩니다.

    동일한 인수를 곱하는 연산을 호출합니다. 지수로.

    예를 들어, 각각이 2인 4개의 동일한 요소의 곱을 찾아야 하는 경우 숫자는 2라고 말합니다. 네 번째 권력으로 상승:

    2의 4제곱이 16이라는 것을 알 수 있습니다.

    이번 강의에서 우리가 살펴볼 내용은 다음과 같습니다. 자연 지수가 있는 도. 지수가 자연수인 학위 유형입니다. 자연수는 0보다 큰 정수라는 점을 기억하세요. 예를 들어 1, 2, 3 등입니다.

    일반적으로 자연 지수를 사용한 학위 정의는 다음과 같습니다.

    수의 거듭제곱 에이자연적인 지표로 N형태의 표현이다 , 이는 제품과 동일합니다. N각각이 동일한 요소 에이

    예:

    숫자를 거듭제곱할 때는 주의해야 합니다. 종종 부주의로 인해 사람은 지수의 밑수에 지수를 곱합니다.

    예를 들어, 5의 2제곱은 각각 5인 두 요소의 곱입니다. 이 곱은 25와 같습니다.

    이제 실수로 밑수 5에 지수 2를 곱했다고 상상해 보세요.

    5의 2승이 10이 아니기 때문에 오류가 발생했습니다.

    또한 지수 1을 갖는 숫자의 거듭제곱은 숫자 자체라는 점을 언급해야 합니다.

    예를 들어, 5의 1제곱은 숫자 5 그 자체입니다.

    따라서 숫자에 표시기가 없으면 표시기가 1과 같다고 가정해야 합니다.

    예를 들어, 숫자 1, 2, 3은 지수 없이 주어지므로 지수는 1과 같습니다. 이 숫자 각각은 지수 1로 쓸 수 있습니다.

    그리고 0을 어떤 거듭제곱으로 올리면 0이 됩니다. 사실, 그 자체를 몇 번이나 곱해도 아무것도 얻지 못합니다. 예:

    그리고 0 0이라는 표현은 의미가 없습니다. 그러나 수학의 일부 분야, 특히 분석 및 집합 이론에서는 0 0이라는 표현이 의미가 있을 수 있습니다.

    연습을 위해 숫자를 거듭제곱하는 몇 가지 예를 풀어보겠습니다.

    예시 1.숫자 3의 2승을 올리세요.

    3의 2제곱은 두 요소의 곱이며 각 요소는 3과 같습니다.

    3 2 = 3 × 3 = 9

    예시 2.숫자 2의 4승을 올리세요.

    2의 4제곱은 네 가지 요소의 곱이며 각 요소는 2와 같습니다.

    2 4 =2 × 2 × 2 × 2 = 16

    예시 3.숫자 2를 3승으로 올리세요.

    2의 3제곱은 세 요소의 곱이며 각 요소는 2와 같습니다.

    2 3 =2 × 2 × 2 = 8

    숫자 10을 거듭제곱하기

    숫자 10을 거듭제곱하려면 지수와 동일한 수의 0을 1 뒤에 추가하면 충분합니다.

    예를 들어, 숫자 10의 2승을 올려보겠습니다. 먼저 숫자 10 자체를 적고 숫자 2를 지표로 표시합니다.

    10 2

    이제 우리는 등호를 넣고 1을 쓰고 0의 수는 지수와 같아야하기 때문에 두 개의 0을 씁니다.

    10 2 = 100

    이는 10의 2제곱이 100이라는 의미입니다. 이는 10의 2제곱이 두 요소의 곱이고 각 요소는 10과 같다는 사실에 기인합니다.

    10 2 = 10 × 10 = 100

    실시예 2. 숫자 10의 3승을 올려보겠습니다.

    이 경우 하나 뒤에 0이 세 개 있습니다.

    10 3 = 1000

    실시예 3. 숫자 10의 4승을 올려보겠습니다.

    이 경우 하나 뒤에는 4개의 0이 있습니다.

    10 4 = 10000

    실시예 4. 10의 1승을 올려보겠습니다.

    이 경우 1 뒤에 0이 하나 있습니다.

    10 1 = 10

    숫자 10, 100, 1000을 10진수의 거듭제곱으로 표현

    숫자 10, 100, 1000 및 10000을 밑이 10인 거듭제곱으로 표현하려면 밑이 10인 것을 적어야 하며 지수로 원래 숫자의 0 개수와 동일한 숫자를 지정해야 합니다.

    숫자 10을 10의 거듭제곱으로 상상해 봅시다. 우리는 그 숫자에 0이 하나 있다는 것을 알 수 있습니다. 즉, 10을 밑으로 하는 거듭제곱인 숫자 10은 10 1로 표시됩니다.

    10 = 10 1

    실시예 2. 숫자 100을 10을 밑으로 하는 거듭제곱으로 상상해 보겠습니다. 숫자 100에는 두 개의 0이 포함되어 있음을 알 수 있습니다. 즉, 10을 밑으로 하는 거듭제곱인 숫자 100은 10 2로 표시됩니다.

    100 = 10 2

    실시예 3. 숫자 1,000을 10을 밑으로 하는 거듭제곱으로 표현해 보겠습니다.

    1 000 = 10 3

    실시예 4. 숫자 10,000을 10을 밑으로 하는 거듭제곱으로 표현해 보겠습니다.

    10 000 = 10 4

    음수를 거듭제곱하기

    음수를 거듭제곱할 때는 괄호로 묶어야 합니다.

    예를 들어, 음수 −2의 2제곱을 올려보겠습니다. −2의 2제곱은 두 요소의 곱이며, 각 요소는 (−2)와 같습니다.

    (−2) 2 = (−2) × (−2) = 4

    숫자 −2를 괄호로 묶지 않으면 표현식 −2 2를 계산하고 있는 것으로 나타납니다. 같지 않다 4. −2²라는 표현은 −4와 같습니다. 이유를 이해하기 위해 몇 가지 사항을 살펴보겠습니다.

    양수 앞에 마이너스를 붙이면 반대값을 취하는 연산.

    숫자 2가 주어졌고 그 반대 숫자를 찾아야 한다고 가정해 보겠습니다. 우리는 2의 반대가 −2라는 것을 알고 있습니다. 즉, 2와 반대되는 숫자를 찾으려면 이 숫자 앞에 마이너스를 붙이면 됩니다. 숫자 앞에 마이너스를 삽입하는 것은 이미 수학에서 본격적인 작업으로 간주됩니다. 이러한 연산을 위에서 언급한 바와 같이 반대값을 취하는 연산이라 한다.

    −2 2 수식의 경우 반대 값을 취하여 거듭제곱하는 연산이라는 두 가지 연산이 발생합니다. 거듭제곱하는 것이 반대 값을 취하는 것보다 우선순위가 높습니다.

    따라서 표현식 −2 2 은 두 단계로 계산됩니다. 먼저 지수 연산이 수행됩니다. 이번 경우에는 2급으로 상향 조정되었습니다. 정수 2

    그런 다음 반대 값이 사용되었습니다. 이 반대 값은 값 4에서 발견되었습니다. 그리고 4의 반대 값은 -4입니다.

    −2 2 = −4

    괄호는 실행 우선순위가 가장 높습니다. 따라서 식 (-2)2를 계산하는 경우에는 반대의 값을 먼저 취한 후 음수 -2를 2제곱한다. 음수의 곱은 양수이므로 결과는 긍정적인 대답 4입니다.

    실시예 2. 숫자 -2를 3승으로 올리세요.

    −2의 3승은 세 가지 요소의 곱이며, 각 요소는 (−2)와 같습니다.

    (−2) 3 = (−2) × (−2) × (−2) = −8

    실시예 3. 숫자 -2를 4제곱합니다.

    −2의 4제곱은 4개의 요소의 곱이며, 각 요소는 (−2)와 같습니다.

    (−2) 4 = (−2) × (−2) × (−2) × (−2) = 16

    음수를 거듭제곱하면 긍정적인 답이나 부정적인 답을 얻을 수 있다는 것을 쉽게 알 수 있습니다. 답의 부호는 원래 학위의 지수에 따라 달라집니다.

    지수가 짝수이면 대답은 양수입니다. 지수가 홀수이면 답은 음수가 됩니다. 숫자 −3의 예를 사용하여 이를 보여드리겠습니다.

    첫 번째와 세 번째 경우에는 지표가 다음과 같습니다. 이상한번호, 그래서 대답은 부정적인.

    두 번째와 네 번째 경우에는 지표가 다음과 같습니다. 심지어번호, 그래서 대답은 긍정적인.

    실시예 7.-5를 3승합니다.

    −5의 3승은 각각 −5와 같은 세 가지 요소의 곱입니다. 지수 3은 홀수이므로 답이 음수가 될 것이라고 미리 말할 수 있습니다.

    (−5) 3 = (−5) × (−5) × (−5) = −125

    실시예 8.-4를 4제곱합니다.

    −4의 4승은 각각 −4와 같은 4개의 요소의 곱입니다. 게다가 지수 4는 짝수이므로 답이 긍정적일 것이라고 미리 말할 수 있습니다.

    (−4) 4 = (−4) × (−4) × (−4) × (−4) = 256

    표현식 값 찾기

    괄호가 포함되지 않은 수식의 값을 찾을 때, 먼저 거듭제곱을 한 다음, 나타나는 순서대로 곱셈과 나눗셈을 한 다음, 나타나는 순서대로 덧셈과 뺄셈을 하게 됩니다.

    실시예 1. 표현식 2 + 5 2의 값을 구합니다.

    먼저 지수화가 수행됩니다. 이 경우 숫자 5는 2제곱이 되어 25가 됩니다. 그런 다음 이 결과가 숫자 2에 추가됩니다.

    2 + 5 2 = 2 + 25 = 27

    실시예 10. 표현식 −6 2 × (−12)의 값을 구합니다.

    먼저 지수화가 수행됩니다. 숫자 −6은 괄호 안에 있지 않으므로 숫자 6이 2제곱되고 결과 앞에 마이너스가 표시됩니다.

    −6 2 × (−12) = −36 × (−12)

    −36에 (−12)를 곱하여 예제를 완성합니다.

    −6 2 × (−12) = −36 × (−12) = 432

    실시예 11. −3 × 2 2 표현식의 값을 구합니다.

    먼저 지수화가 수행됩니다. 그런 다음 결과 결과에 숫자 -3을 곱합니다.

    −3 × 2 2 = −3 × 4 = −12

    표현식에 괄호가 포함된 경우 먼저 괄호 안의 연산을 수행한 다음 지수화, 곱셈과 나눗셈, 덧셈과 뺄셈을 수행해야 합니다.

    실시예 12. 식의 값을 구합니다 (3 2 + 1 × 3) − 15 + 5

    먼저 괄호 안의 작업을 수행합니다. 괄호 안에는 이전에 배운 규칙을 적용합니다. 즉, 먼저 숫자 3을 2제곱한 다음 1 × 3을 곱하고, 그런 다음 숫자 3을 2제곱하고 1 × 3을 곱한 결과를 더합니다. . 다음으로, 나타나는 순서대로 뺄셈과 덧셈이 수행됩니다. 원래 표현식에서 작업을 실행하는 순서를 다음과 같이 정렬해 보겠습니다.

    (3 2 + 1 × 3) − 15 + 5 = 12 − 15 + 5 = 2

    실시예 13. 2 × 5 3 + 5 × 2 3 표현식의 값을 구합니다.

    먼저 숫자를 거듭제곱한 다음 결과를 곱하고 더해 보겠습니다.

    2 × 5 3 + 5 × 2 3 = 2 × 125 + 5 × 8 = 250 + 40 = 290

    동일한 전력 변환

    권력에 대해 다양한 신원 변환을 수행하여 단순화할 수 있습니다.

    (2 3) 2 표현식을 계산해야 한다고 가정해 보겠습니다. 이 예에서는 2의 3승이 2승이 됩니다. 즉, 학위가 다른 학위로 올라갑니다.

    (2 3) 2는 두 거듭제곱의 곱이며, 각 거듭제곱은 2 3과 같습니다.

    더욱이, 이들 각각의 거듭제곱은 세 가지 요소의 곱이며, 각 요소는 2와 같습니다.

    우리는 2 × 2 × 2 × 2 × 2 × 2의 곱을 얻었는데 이는 64와 같습니다. 이는 표현식 (2 3) 2 또는 64의 값을 의미합니다.

    이 예는 크게 단순화될 수 있습니다. 이를 위해 식 (2 3) 2의 지수를 곱하고 밑수 2 위에 쓸 수 있습니다.

    우리는 2 6을 받았습니다. 2의 6승은 6개의 요소의 곱이며 각 요소는 2와 같습니다. 이 곱은 64와 같습니다.

    이 속성은 2 3 이 2 × 2 × 2의 곱이고, 이는 다시 두 번 반복되기 때문에 작동합니다. 그러면 밑수 2가 6번 반복되는 것으로 나타났습니다. 여기에서 2 × 2 × 2 × 2 × 2 × 2는 2 6이라고 쓸 수 있습니다.

    일반적으로 어떠한 이유로든 에이지표 포함 그리고 N, 다음과 같은 동등성이 유지됩니다.

    ()m = n × m

    이 동일한 변환을 권력을 권력으로 끌어올리다. 다음과 같이 읽을 수 있습니다. " 거듭제곱을 거듭제곱할 때 밑수는 그대로 유지되고 지수는 곱해집니다." .

    지표를 곱하면 다른 학위를 얻을 수 있으며 그 값을 찾을 수 있습니다.

    실시예 2. 식의 값을 구합니다 (3 2) 2

    이 예에서는 밑이 3이고 숫자 2와 2가 지수입니다. 힘을 힘으로 높이는 규칙을 사용합시다. 기본을 변경하지 않고 지표를 곱합니다.

    우리는 3 4를 얻었습니다. 그리고 3의 4제곱은 81입니다.

    나머지 변환을 고려해 보겠습니다.

    거듭제곱

    거듭제곱을 곱하려면 각 거듭제곱을 별도로 계산하고 결과를 곱해야 합니다.

    예를 들어 2 2 를 3 3 으로 곱해 봅시다.

    2 2는 숫자 4이고, 3 3은 숫자 27입니다. 4와 27을 곱하면 108이 됩니다.

    2 2 × 3 3 = 4 × 27 = 108

    이 예에서는 학위 기준이 달랐습니다. 베이스가 동일하면 베이스 하나를 적고, 원래 도의 지표의 합을 지표로 적으면 됩니다.

    예를 들어 2 2 에 2 3 을 곱합니다.

    이 예에서는 학위의 기준이 동일합니다. 이 경우에는 밑수 2를 하나 적고, 2 2 와 2 3 제곱의 지수의 합을 지수로 적으면 됩니다. 즉, 기초를 변경하지 않고 그대로 두고 원래 각도의 지표를 합산합니다. 다음과 같이 보일 것입니다:

    우리는 2 5를 받았습니다. 2의 5제곱은 32입니다.

    이 속성은 2 2 가 2 × 2의 곱이고 2 3 가 2 × 2 × 2의 곱이기 때문에 유효합니다. 그런 다음 각각이 2인 5개의 동일한 요소의 곱을 얻습니다. 이 제품은 2 5로 표현될 수 있습니다.

    일반적으로 누구에게나 에이및 지표 그리고 N다음과 같은 평등이 성립합니다:

    이 동일한 변환을 학위의 기본 속성. 다음과 같이 읽을 수 있습니다. 동일한 밑수로 거듭제곱을 곱하면 밑수는 그대로 유지되고 지수가 더해집니다.” .

    이 변환은 다양한 각도에 적용될 수 있습니다. 가장 중요한 것은 기본이 동일하다는 것입니다.

    예를 들어, 2 1 × 2 2 × 2 3이라는 표현식의 값을 찾아보겠습니다. 베이스 2

    일부 문제에서는 최종 차수를 계산하지 않고 적절한 변환을 수행하는 것만으로도 충분할 수 있습니다. 물론 큰 힘을 계산하는 것이 그렇게 쉽지 않기 때문에 이것은 매우 편리합니다.

    실시예 1. 5 8 × 25 식을 거듭제곱으로 표현하세요.

    이 문제에서는 5 8 ​​× 25라는 표현 대신에 1의 거듭제곱을 얻어야 합니다.

    숫자 25는 5 2로 나타낼 수 있습니다. 그러면 다음과 같은 표현식을 얻습니다.

    이 표현식에서는 기본 도수 속성을 적용할 수 있습니다. 밑수 5를 변경하지 않고 지수 8과 2를 추가합니다.

    해결책을 간략하게 적어 보겠습니다.

    실시예 2. 2 9 × 32 식을 거듭제곱으로 표현하세요.

    숫자 32는 2 5로 나타낼 수 있습니다. 그러면 2 9 × 2 5라는 표현이 나옵니다. 다음으로, 도의 기본 속성을 적용할 수 있습니다. 기본 2를 변경하지 않고 지수 9와 5를 추가합니다. 결과는 다음과 같은 솔루션이 됩니다.

    실시예 3. 거듭제곱의 기본 성질을 이용하여 3 × 3 곱을 계산합니다.

    3 곱하기 3은 9라는 것은 누구나 잘 알고 있지만 문제는 해법에서 각도의 기본 속성을 사용해야 합니다. 어떻게 해야 하나요?

    지표 없이 숫자가 주어지면 지표는 1과 동일한 것으로 간주되어야 한다는 것을 기억합니다. 따라서 인수 3과 3은 3 1 및 3 1로 쓸 수 있습니다.

    3 1 × 3 1

    이제 학위의 기본 속성을 사용해 보겠습니다. 기본 3은 변경하지 않고 그대로 두고 표시기 1과 1을 더합니다.

    3 1 × 3 1 = 3 2 = 9

    실시예 4. 거듭제곱의 기본 성질을 이용하여 2 × 2 × 3 2 × 3 3의 곱을 계산합니다.

    곱 2 × 2를 2 1 × 2 1로 바꾼 다음 2 1 + 1로, 그 다음 2 2로 바꿉니다. 제품 3 2 × 3 3을 3 2 + 3으로 교체한 다음 3 5로 교체합니다.

    실시예 5. 곱셈을 수행 엑스 × 엑스

    이는 지수 1과 동일한 두 개의 문자 요소입니다. 명확성을 위해 이 지수를 적어 보겠습니다. 다음은 베이스 엑스변경하지 않고 그대로 두고 지표를 추가해 보겠습니다.

    보드에 있는 동안 동일한 기반을 가진 거듭제곱의 곱셈을 여기에서처럼 자세하게 기록해서는 안 됩니다. 이런 계산은 머리 속에서 해야 합니다. 상세한 메모는 교사를 짜증나게 할 가능성이 높으며 교사는 이에 대한 성적을 낮출 것입니다. 여기서는 자료를 최대한 이해하기 쉽도록 자세하게 녹음했습니다.

    이 예제에 대한 솔루션을 다음과 같이 작성하는 것이 좋습니다.

    실시예 6. 곱셈을 수행 엑스 2 × ×

    두 번째 요소의 지수는 1과 같습니다. 명확성을 위해 적어 보겠습니다. 다음으로 기본을 변경하지 않고 표시기를 추가합니다.

    실시예 7. 곱셈을 수행 와이 3 와이 2 와이

    세 번째 요소의 지수는 1과 같습니다. 명확성을 위해 적어 보겠습니다. 다음으로 기본을 변경하지 않고 표시기를 추가합니다.

    실시예 8. 곱셈을 수행 아아 3아 2아 5

    첫 번째 요소의 지수는 1과 같습니다. 명확성을 위해 적어 보겠습니다. 다음으로 기본을 변경하지 않고 표시기를 추가합니다.

    실시예 9. 거듭제곱 3 8을 동일한 밑수를 가진 거듭제곱의 곱으로 표현합니다.

    이 문제에서는 밑수가 3이고 지수의 합이 8이 되는 거듭제곱의 곱을 만들어야 합니다. 모든 지표를 사용할 수 있습니다. 3 8 제곱을 3 5 와 3 3 제곱의 곱으로 표현해 보겠습니다.

    이 예에서 우리는 다시 정도의 기본 속성에 의존했습니다. 결국, 3 5 × 3 3이라는 표현은 3 5 + 3으로 쓸 수 있으며, 이 중 3 8이 됩니다.

    물론 3·8의 거듭제곱을 다른 거듭제곱의 곱으로 표현하는 것도 가능했다. 예를 들어, 이 곱은 3 8과 같으므로 3 7 × 3 1 형식입니다.

    학위를 동일한 기반을 가진 권력의 산물로 표현하는 것은 대부분 창의적인 작품. 그러므로 실험을 두려워할 필요가 없습니다.

    실시예 10. 학위 제출 엑스 12 베이스가 있는 다양한 파워 제품의 형태로 엑스 .

    도의 기본 속성을 사용해 보겠습니다. 상상해보자 엑스 12 베이스가 있는 제품 형태 엑스, 지표의 합은 12입니다.

    명확성을 위해 지표의 합계가 포함된 구성이 기록되었습니다. 대부분의 경우 건너뛸 수 있습니다. 그러면 다음과 같은 컴팩트한 솔루션을 얻을 수 있습니다.

    제품의 힘을 키우다

    곱을 거듭제곱하려면 이 곱의 각 인수를 지정된 거듭제곱으로 올리고 그 결과를 곱해야 합니다.

    예를 들어 곱의 2×3을 2제곱해 보겠습니다. 이 제품을 괄호 안에 넣고 2를 지표로 표시해 보겠습니다.

    이제 2 × 3 곱의 각 인수를 2제곱하고 결과를 곱해 보겠습니다.

    이 규칙의 작동 원리는 처음에 제시된 정도의 정의에 기초합니다.

    곱의 2×3을 2제곱한다는 것은 곱을 두 번 반복한다는 의미입니다. 그리고 이를 두 번 반복하면 다음과 같은 결과를 얻을 수 있습니다.

    2×3×2×3

    요인의 위치를 ​​재배열해도 결과는 바뀌지 않습니다. 이를 통해 다음과 같은 요소를 그룹화할 수 있습니다.

    2×2×3×3

    반복되는 요소는 짧은 항목(지표가 있는 기본 항목)으로 대체될 수 있습니다. 2×2 제품은 2×2, 3×3 제품은 3×2로 교환 가능합니다. 그러면 2 × 2 × 3 × 3이라는 표현은 2 2 × 3 2라는 표현이 됩니다.

    허락하다 ab원본 작품. 특정 제품을 강력하게 올리려면 N, 요소를 별도로 곱해야합니다 에이그리고 지정된 정도까지 N

    이 속성은 여러 요인에 대해 적용됩니다. 다음 표현식도 유효합니다.

    실시예 2. 식의 값을 구합니다(2 × 3 × 4) 2

    이 예에서는 곱의 2 × 3 × 4를 2제곱해야 합니다. 이렇게 하려면 이 곱의 각 요소를 2제곱하고 결과를 곱해야 합니다.

    실시예 3. 제품을 3승으로 올리세요. a×b×c

    이 제품을 괄호 안에 넣고 숫자 3을 지표로 표시하겠습니다.

    실시예 4. 제품 3을 3승으로 올리세요. xyz

    이 제품을 괄호 안에 넣고 지표로 3을 표시하겠습니다.

    (3xyz) 3

    이 곱의 각 요소를 3승으로 올려보겠습니다.

    (3xyz) 3 = 3 3 엑스 3 와이 3 3

    3의 3제곱은 27과 같습니다. 나머지는 변경하지 않고 그대로 두겠습니다.

    (3xyz) 3 = 3 3 엑스 3 와이 3 3 = 27엑스 3 와이 3 3

    일부 예에서, 동일한 지수를 갖는 거듭제곱의 곱셈은 동일한 지수를 갖는 밑수의 곱으로 대체될 수 있습니다.

    예를 들어, 5 2 × 3 2 표현식의 값을 계산해 보겠습니다. 각 숫자를 2제곱하고 결과를 곱해 보겠습니다.

    5 2 × 3 2 = 25 × 9 = 225

    하지만 각 학위를 별도로 계산할 필요는 없습니다. 대신, 이 거듭제곱의 곱은 지수(5 × 3) 2 가 하나인 곱으로 대체될 수 있습니다. 다음으로, 괄호 안의 값을 계산하고 결과를 2제곱합니다.

    5 2 × 3 2 = (5 × 3) 2 = (15) 2 = 225

    이 경우 곱셈의 지수 법칙이 다시 사용되었습니다. 결국, 만약에 (a×b)N = n × b n , 저것 n × b n = (a × b)n. 즉, 평등의 왼쪽과 오른쪽이 서로 바뀌었습니다.

    학위를 힘으로 올리기

    우리는 동일한 각도 변환의 본질을 이해하려고 할 때 이 변환을 예로 고려했습니다.

    거듭제곱을 거듭제곱할 때 밑수는 변경되지 않고 그대로 유지되며 지수는 곱해집니다.

    ()m = n × m

    예를 들어, (2 3) 2라는 표현은 2의 거듭제곱입니다. 2의 3제곱은 2의 거듭제곱입니다. 이 표현식의 값을 찾으려면 밑을 변경하지 않고 지수를 곱할 수 있습니다.

    (2 3) 2 = 2 3 × 2 = 2 6

    (2 3) 2 = 2 3 × 2 = 2 6 = 64

    이 규칙은 이전 규칙인 곱의 지수화와 차수의 기본 속성을 기반으로 합니다.

    식 (2 3) 2로 돌아가 보겠습니다. 괄호 2 3의 표현식은 세 개의 동일한 인수의 곱이며 각 인수는 2와 같습니다. 그런 다음 표현식 (2 3)에서 괄호 안의 2 거듭제곱은 2 × 2 × 2의 곱으로 대체될 수 있습니다.

    (2×2×2) 2

    그리고 이것은 우리가 이전에 연구했던 곱의 지수화입니다. 제품의 거듭제곱을 높이려면 해당 제품의 각 요소를 표시된 거듭제곱으로 올리고 얻은 결과를 곱해야 한다는 점을 기억해 보겠습니다.

    (2 × 2 × 2) 2 = 2 2 × 2 2 × 2 2

    이제 우리는 학위의 기본 속성을 다루고 있습니다. 기본을 변경하지 않고 그대로 두고 표시기를 추가합니다.

    (2 × 2 × 2) 2 = 2 2 × 2 2 × 2 2 = 2 2 + 2 + 2 = 2 6

    이전과 마찬가지로 2 6을 받았습니다. 이 학위의 값은 64입니다.

    (2 × 2 × 2) 2 = 2 2 × 2 2 × 2 2 = 2 2 + 2 + 2 = 2 6 = 64

    요소가 거듭제곱인 제품도 거듭제곱으로 올라갈 수 있습니다.

    예를 들어 (2 2 × 3 2) 3이라는 수식의 값을 찾아보겠습니다. 여기서 각 승수의 지표에 총 지표 3을 곱해야 합니다. 다음으로, 각 학위의 값을 찾아 곱을 계산합니다.

    (2 2 × 3 2) 3 = 2 2 × 3 × 3 2 × 3 = 2 6 × 3 6 = 64 × 729 = 46656

    제품을 강화할 때도 거의 같은 일이 발생합니다. 제품의 거듭제곱을 올리면 해당 제품의 각 요소가 지정된 거듭제곱까지 올라간다고 했습니다.

    예를 들어, 곱 2 × 4를 3제곱하려면 다음 식을 작성합니다.

    그러나 이전에는 지표 없이 숫자가 주어지면 지표는 1과 동일한 것으로 간주되어야 한다고 말했습니다. 곱 2 × 4의 인수는 처음에 1과 같은 지수를 갖는 것으로 나타났습니다. 이는 표현 2 1 × 4 1 ​​​​이 3승으로 올라갔음을 의미합니다. 그리고 이것은 어느 정도 정도를 높이고 있습니다.

    거듭제곱을 거듭제곱하는 규칙을 사용하여 해법을 다시 작성해 보겠습니다. 우리는 동일한 결과를 얻어야 합니다:

    실시예 2. 식의 값을 구합니다 (3 3) 2

    베이스를 변경하지 않고 그대로 두고 지표를 곱합니다.

    우리는 3 6을 얻었습니다. 3의 6제곱은 729입니다.

    실시예 3xy

    실시예 4. 표현식에서 지수화를 수행합니다( 알파벳)⁵

    곱의 각 요소를 5승으로 올려보겠습니다.

    실시예 5도끼) 3

    제품의 각 요소를 3승으로 올려보겠습니다.

    음수 -2는 3승이므로 괄호 안에 넣었습니다.

    실시예 6. 표현식에서 지수화를 수행합니다(10 xy) 2

    실시예 7. 표현식에서 지수화를 수행합니다(−5 엑스) 3

    실시예 8. 표현식에서 지수화를 수행합니다(−3 와이) 4

    실시예 9. 표현식에서 지수화를 수행합니다(−2 abx)⁴

    실시예 10. 표현을 단순화하라 엑스 5×( 엑스 2) 3

    엑스지금은 5를 변경하지 않고 그대로 두고 다음 식( 엑스 2) 3 힘을 힘차게 올려보자:

    엑스 5 × (엑스 2) 3 = x 5 × × 2×3 = x 5 × × 6

    이제 곱셈을 해보자 엑스 5 × × 6. 이를 위해 학위의 기본 속성인 기본 속성을 사용합니다. 엑스변경하지 않고 그대로 두고 지표를 추가해 보겠습니다.

    엑스 5 × (엑스 2) 3 = x 5 × × 2×3 = x 5 × × 6 = 엑스 5 + 6 = 엑스 11

    실시예 9. 거듭제곱의 기본 성질을 이용하여 4 3 × 2 2 식의 값을 구합니다.

    원래 학위의 기준이 동일한 경우 학위의 기본 속성을 사용할 수 있습니다. 이 예에서는 밑이 다르기 때문에 먼저 원래 표현식을 약간 수정해야 합니다. 즉, 거듭제곱의 밑이 동일해지는지 확인해야 합니다.

    4 3차를 자세히 살펴보겠습니다. 이 정도의 밑은 숫자 4이며, 이는 2 2로 나타낼 수 있습니다. 그러면 원래 표현식은 (2 2) 3 × 2 2 형식을 취하게 됩니다. 식 (2 2) 3에서 거듭제곱을 거듭하면 2 6이 됩니다. 그러면 원래 표현식은 2 6 × 2 2 형식을 취하게 되며, 이는 거듭제곱의 기본 속성을 사용하여 계산할 수 있습니다.

    이 예에 대한 해결책을 적어 보겠습니다.

    학위구분

    거듭제곱을 나누려면 각 거듭제곱의 값을 구한 다음 일반 숫자를 나누어야 합니다.

    예를 들어, 4 3 을 2 2 로 나누어 보겠습니다.

    4 3을 계산해 보면 64가 나옵니다. 2 2를 계산하면 4가 됩니다. 이제 64를 4로 나누면 16이 됩니다.

    거듭제곱을 나눌 때 밑수가 동일한 것으로 판명되면 밑수는 변경되지 않고 그대로 둘 수 있으며 피제수 지수에서 제수의 지수를 뺄 수 있습니다.

    예를 들어 2 3 : 2 2 표현식의 값을 찾아보겠습니다.

    밑수 2를 변경하지 않고 그대로 두고 피제수 지수에서 제수 지수를 뺍니다.

    이는 2 3 : 2 2 수식의 값이 2와 같음을 의미합니다.

    이 속성은 동일한 기반을 가진 거듭제곱의 곱셈, 즉 우리가 말했듯이 거듭제곱의 기본 속성에 기반합니다.

    이전 예인 2 3: 2 2로 돌아가 보겠습니다. 여기서 피제수는 2 3이고 제수는 2 2입니다.

    한 숫자를 다른 숫자로 나눈다는 것은 제수를 곱했을 때 배당이 되는 숫자를 찾는 것을 의미합니다.

    우리의 경우 2 3을 2 2로 나누는 것은 제수 2 2를 곱하면 2 3이 되는 거듭제곱을 찾는 것을 의미합니다. 2 2 를 곱하여 2 3 을 얻을 수 있는 거듭제곱은 얼마입니까? 당연히 2차만 1이 됩니다. 학위의 기본 속성으로부터 우리는 다음을 얻습니다:

    2 3:2 2 수식 자체를 직접 계산하여 2 3:2 2 수식의 값이 2 1 과 같은지 확인할 수 있습니다. 이를 위해 먼저 2 3 거듭제곱의 값을 구하면 8이 됩니다. 그런 다음 2 2 거듭제곱의 값을 구하면 4가 됩니다. 8을 4로 나누면 2 = 2 1이므로 2 또는 2 1이 됩니다.

    2 3: 2 2 = 8: 4 = 2

    따라서 동일한 기반으로 권력을 나눌 때 다음과 같은 평등이 유지됩니다.

    이유뿐만 아니라 지표도 동일할 수도 있습니다. 이 경우 답은 하나가 될 것입니다.

    예를 들어 2 2: 2 2라는 수식의 값을 찾아보겠습니다. 각 도의 값을 계산하고 결과 숫자를 나눕니다.

    예시 2 2:2 2를 풀 때 동일한 기준으로 힘을 나누는 규칙을 적용할 수도 있습니다. 2 2 와 2 2 거듭제곱의 지수 차이가 0이기 때문에 결과는 0의 거듭제곱인 숫자입니다.

    우리는 왜 2의 0제곱이 1과 같은지 위에서 알아냈습니다. 제곱 분할 규칙을 사용하지 않고 일반적인 방법을 사용하여 2 2:2 2를 계산하면 하나를 얻습니다.

    실시예 2. 표현식 4 12: 4 10의 값을 구합니다.

    4를 변경하지 않고 그대로 두고 피제수 지수에서 제수 지수를 뺍니다.

    4 12: 4 10 = 4 12 − 10 = 4 2 = 16

    실시예 3. 몫을 제시하세요 엑스 3: 엑스베이스가 있는 파워의 형태로 엑스

    전력 분할 규칙을 사용해 보겠습니다. 베이스 엑스이를 변경하지 않고 그대로 두고 피제수 지수에서 제수 지수를 뺍니다. 제수 지수는 1과 같습니다. 명확성을 위해 다음과 같이 적어 보겠습니다.

    실시예 4. 몫을 제시하세요 엑스 3: 엑스 2 베이스가 있는 파워로 엑스

    전력 분할 규칙을 사용해 보겠습니다. 베이스 엑스

    권력의 분할은 분수로 쓸 수 있습니다. 따라서 이전 예제는 다음과 같이 작성할 수 있습니다.

    분수의 분자와 분모는 확장된 형태, 즉 동일한 인수의 곱 형태로 쓸 수 있습니다. 도 엑스 3은 다음과 같이 쓸 수 있다. x × x × x, 및 학위 엑스 2 어떻게 엑스 × 엑스. 그 다음에는 디자인 엑스 3 − 2 는 건너뛸 수 있고 분수는 줄어들 수 있습니다. 분자와 분모의 두 가지 요소를 줄이는 것이 가능합니다 엑스. 결과적으로 하나의 승수가 남습니다. 엑스

    또는 더 짧게:

    거듭제곱으로 구성된 분수를 빠르게 줄일 수 있는 것도 유용합니다. 예를 들어 분수는 다음과 같이 줄일 수 있습니다. 엑스 2. 분수를 다음과 같이 줄이려면 엑스 2 분수의 분자와 분모를 다음과 같이 나누어야 합니다. 엑스 2

    학위 구분은 자세히 설명할 필요가 없습니다. 위의 약어는 더 짧게 작성할 수 있습니다.

    또는 더 짧게:

    실시예 5. 나눗셈 수행 엑스 12 :엑스 3

    전력 분할 규칙을 사용해 보겠습니다. 베이스 엑스변경하지 않고 그대로 두고 배당 지수에서 제수 지수를 뺍니다.

    분수 축소를 사용하여 해를 작성해 보겠습니다. 학위구분 엑스 12 :엑스 3을 형태로 적어보자. 다음으로, 이 부분을 다음과 같이 줄입니다. 엑스 3 .

    실시예 6. 표현식의 값 찾기

    분자에서 우리는 동일한 밑수를 사용하여 거듭제곱의 곱셈을 수행합니다.

    이제 우리는 동일한 기반으로 권력을 나누는 규칙을 적용합니다. 밑수 7을 변경하지 않고 그대로 두고 피제수 지수에서 제수 지수를 뺍니다.

    검정력 7 2를 계산하여 예제를 완성합니다.

    실시예 7. 표현식의 값 찾기

    분자의 거듭제곱을 거듭제곱해 보겠습니다. (2 3) 4 표현식을 사용하여 이 작업을 수행해야 합니다.

    이제 분자의 동일한 밑수를 사용하여 거듭제곱을 곱해 보겠습니다.