Утеплители Изоляция Блоки

Последовательность фибоначчи в природе. Золотое сечение и числа фибоначчи. Последовательность Фибоначчи и пропорциональное соотношение


Не потеряйте. Подпишитесь и получите ссылку на статью себе на почту.

Вам, конечно же, знакома идея о том, что математика является самой главной из всех наук. Но многие могут с этим не согласиться, т.к. порой кажется, что математика – это лишь задачи, примеры и тому подобная скукотища. Однако математика может запросто показать нам знакомые вещи с совершенно незнакомой стороны. Мало того – она даже может раскрыть тайны мироздания. Как? Давайте обратимся к числам Фибоначчи.

Что такое числа Фибоначчи?

Числа Фибоначчи являются элементами числовой последовательности, где каждое последующее посредством суммирования двух предыдущих, например: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89… Как правило, записывается такая последовательность формулой: F 0 = 0, F 1 = 1, F n = F n-1 + F n-2 , n ≥ 2.

Числа Фибоначчи могут начинаться и с отрицательных значений «n», но в таком случае последовательность будет двусторонней – она будет охватывать и положительные и отрицательные числа, стремясь к бесконечности в двух направлениях. Примером такой последовательности может послужить: -34, -21, -13, -8, -5, -3, -2, -1, 1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, а формула будет: F n = F n+1 — F n+2 или же F -n = (-1) n+1 Fn.

Создателем чисел Фибоначчи является один из первых математиков Европы средних веков по имени Леонардо Пизанский, которого, собственно и знают, как Фибоначчи – это прозвище он получил спустя много лет после своей смерти.

При жизни Леонардо Пизанский очень любил математические турниры, по причине чего в своих работах («Liber abaci» /«Книга абака», 1202; «Practica geometriae»/«Практика геометрии», 1220, «Flos»/«Цветок», 1225 год – исследование на тему кубических уравнений и «Liber quadratorum»/«Книга квадратов», 1225 – задачи о неопределенных квадратных уравнениях) очень часто разбирал всевозможные математические задачи.

О жизненном пути самого Фибоначчи известно крайне мало. Но достоверно известно то, что его задачи пользовались огромнейшей популярностью в математических кругах в последующие века. Одну из таких мы и рассмотрим далее.

Задача Фибоначчи с кроликами

Для выполнения задачи автором были поставлены следующие условия: есть пара новорождённых крольчат (самка и самец), отличающихся интересной особенностью – со второго месяца жизни они производят новую пару кроликов – тоже самку и самца. Кролики находятся в замкнутом пространстве и постоянно размножаются. И ни один кролик не умирает.

Задача : определить количество кроликов через год.

Решение :

У нас есть:

  • Одна пара кроликов в начале первого месяца, которая спаривается в конце месяца
  • Две пары кроликов во втором месяце (первая пара и потомство)
  • Три пары кроликов в третьем месяце (первая пара, потомство первой пары с прошлого месяца и новое потомство)
  • Пять пар кроликов в четвёртом месяце (первая пара, первое и второе потомство первой пары, третье потомство первой пары и первое потомство второй пары)

Количество кроликов в месяц «n» = количеству кроликов прошлого месяца + количество новых пар кроликов, другими словами, вышеназванная формула: F n = F n-1 + F n-2 . Отсюда получается рекуррентная числовая последовательность (о рекурсии мы скажем далее), где каждое новое число соответствует сумме двух предыдущих чисел:

1 месяц: 1 + 1 = 2

2 месяц: 2 + 1 = 3

3 месяц: 3 + 2 = 5

4 месяц: 5 + 3 = 8

5 месяц: 8 + 5 = 13

6 месяц: 13 + 8 = 21

7 месяц: 21 + 13 = 34

8 месяц: 34 + 21 = 55

9 месяц: 55 + 34 = 89

10 месяц: 89 + 55 = 144

11 месяц: 144 + 89 = 233

12 месяц: 233+ 144 = 377

И эта последовательность может продолжаться бесконечно долго, но учитывая, что задачей является узнать количество кроликов по истечении года, получается 377 пар.

Здесь важно также заметить, что одним из свойств чисел Фибоначчи является то, что если сопоставить две последовательные пары, а затем разделить большую на меньшую, то результат будет двигаться по направлению к золотому сечению, о котором мы также скажем ниже.

Пока же предлагаем вам ещё две задачи по числам Фибоначчи:

  • Определить квадратное число, о котором известно только, что если отнять от него 5 или прибавить к нему 5, то снова выйдет квадратное число.
  • Определить число, делящееся на 7, но при условии, что поделив его на 2, 3, 4, 5 или 6 в остатке будет 1.

Такие задачи не только станут отличным способом развития ума, но и занимательным времяпрепровождением. О том, как решаются эти задачи, вы также можете узнать, поискав информацию в Интернете. Мы же не будем заострять на них внимание, а продолжим наш рассказ.

Что же такое рекурсия и золотое сечение?

Рекурсия

Рекурсия является описанием, определением или изображением какого-либо объекта или процесса, в котором есть сам данный объект или процесс. Иначе говоря, объект или процесс можно назвать частью самого себя.

Рекурсия широко используется не только в математической науке, но также и в информатике, массовой культуре и искусстве. Применимо к числам Фибоначчи, можно сказать, что если число равно «n>2», то «n» = (n-1)+(n-2).

Золотое сечение

Золотое сечение является делением целого на части, соотносящиеся по принципу: большее относится к меньшему аналогично тому, как общая величина относится к большей части.

Впервые о золотом сечении упоминает Евклид (трактат «Начала» прим. 300 лет до н.э.), говоря и построении правильного прямоугольника. Однако более привычное понятие было введено немецким математиком Мартином Омом.

Приблизительно золотое сечение можно представить в качестве пропорционального деления на две разные части, к примеру, на 38% и 68%. Численное же выражение золотого сечения равно примерно 1,6180339887.

На практике золотое сечение используется в архитектуре, изобразительном искусстве (посмотрите работы ), кино и других направлениях. На протяжении долгого времени, впрочем, как и сейчас, золотое сечение считалось эстетической пропорцией, хотя большинством людей оно воспринимается непропорциональным – вытянутым.

Вы можете попробовать оценить золотое сечение сами, руководствуясь следующими пропорциями:

  • Длина отрезка a = 0,618
  • Длина отрезка b= 0,382
  • Длина отрезка c = 1
  • Соотношение c и a = 1,618
  • Соотношение c и b = 2,618

Теперь же применим золотое сечение к числам Фибоначчи: берём два соседних члена его последовательности и делим большее на меньшее. Получаем примерно 1,618. Если же возьмём то же самое большее число и поделим его на следующее большее за ним, то получим примерно 0,618. Попробуйте сами: «поиграйте» с числами 21 и 34 или какими-то другими. Если же провести этот опыт с первыми числами последовательности Фибоначчи, то такого результата уже не будет, т.к. золотое сечение «не работает» в начале последовательности. Кстати, чтобы определить все числа Фибоначчи, нужно знать всего лишь три первых последовательных числа.

И в заключение ещё немного пищи для ума.

Золотой прямоугольник и спираль Фибоначчи

«Золотой прямоугольник» — это ещё одна взаимосвязь между золотым сечением и числами Фибоначчи, т.к. соотношение его сторон равно 1,618 к 1 (вспоминайте число 1,618!).

Вот пример: берём два числа из последовательности Фибоначчи, например 8 и 13, и чертим прямоугольник с шириной 8 см и длинной 13 см. Далее разбиваем основной прямоугольник на мелкие, но их длина и ширина должна соответствовать числам Фибоначчи – длина одной грани большого прямоугольника должна равняться двум длинам грани меньшего.

После этого соединяем плавной линией углы всех имеющихся у нас прямоугольников и получаем частный случай логарифмической спирали – спираль Фибоначчи. Её основными свойствами являются отсутствие границ и изменение форм. Такую спираль можно часто встретить в природе: самыми яркими примерами являются раковины моллюсков, циклоны на изображениях со спутника и даже ряд галактик. Но более интересно то, что этому же правилу подчиняется и ДНК живых организмов, ведь вы помните, что оно имеет спиралевидную форму?

Эти и многие другие «случайные» совпадения даже сегодня будоражат сознание учёных и наводят на мысль о том, что всё во Вселенной подчинено единому алгоритму, причём, именно математическому. И эта наука кроет в себе огромное количество совсем нескучных тайн и загадок.

Леонардо Фибоначчи — один из знаменитейших математиков Средневековья. Одно из важнейших его достижений — числовой ряд, который определяет золотое сечение и прослеживается во всей природе нашей планеты.

Удивительное свойство этих чисел, что сумма всех предыдущих чисел равна последующему числу (проверьте сами):

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610… — ряд Фибоначчи

Оказывается, эта последовательность имеет множество интересных с точки зрения математики свойств. Вот пример: вы можете разделить линию на две части. Отношение меньшей части линии к большей будет равно отношению большей части ко всей линии. Этот коэффицент пропорциональности, приблизительно равный 1,618, известен как золотое сечение.

Ряд Фибоначчи мог бы остаться только математическим казусом, если бы не то обстоятельство, что все исследователи золотого сечения находят эту последовательность во всем растительном и в животном мире. Вот несколько удивительных примеров:

Расположение листьев на ветке, семян подсолнечника, шишек сосны проявляет себя как золотое сечение. Если смотреть на листья такого растения сверху, можно заметить, что они распускаются по спирали. Углы между соседними листьями образуют правильный математический ряд, известный под названием последовательности Фибоначчи. Благодаря этому каждый отдельно взятый лист, растущий на дереве, получает максимально доступное количество тепла и света.

В ящерице с первого взгляда улавливаются приятные для нашего глаза пропорции — длина ее хвоста так относится к длине остального тела, как 62 к 38.

Ученый Цейзинг проделал колоссальную работу,чтобы обнаружить золотое сечение в теле человека. Он измерил около двух тысяч человеческих тел. Деление тела точкой пупа — важнейший показатель золотого сечения. Пропорции мужского тела колеблются в пределах среднего отношения 13: 8 = 1,625 и несколько ближе подходят к золотому сечению, чем пропорции женского тела, в отношении которого среднее значение пропорции выражается в соотношении 8: 5 = 1,6. Пропорции золотого сечения проявляются и в отношении других частей тела — длина плеча, предплечья и кисти, кисти и пальцев и т.д.

В эпоху Возрождения считалось, что именно эта пропорция из ряда Фибоначчи, соблюденная в архитектурных сооружениях и других видах искусства, больше всего радует глаз. Вот несколько примеров использования золотого сечения в искусстве:

Портрет Моны Лизы

Портрет Монны Лизы долгие годы привлекает внимание исследователей, которые обнаружили, что композиция рисунка основана на золотых треугольниках, являющихся частями правильного звездчатого пятиугольника, который строится на принципах золотого сечения.

Парферон

Золотые пропорции присутствуют в размерах фасада древнегреческого храма Парфенона. Это древнее сооружение с его гармоническими пропорциями дарит нам такое же эстетическое наслаждение как и нашим предкам. Многие искусствоведы, стремившиеся раскрыть секрет того могучего эмоционального воздействия, которое это здание оказывает на зрителя, искали и находили в соотношениях его частей золотую пропорцию.

Рафаэль — «Избиение младенцев»

Картина строится на спирали, соблюдающей пропорции золотого сечения. Мы не знаем, рисовал ли на самом деле Рафаэль золотую спираль при создании композиции»Избиение младенцев» или только»чувствовал» ее.

Наш мир чудесен и полон больших неожиданностей. Удивительная нить взаимосвязи соединяет множество обыденных для нас вещей. Золотое сечение легендарно тем, что оно объединило, казалось бы, две совершенно разные ветви познания — математику, царицу точности и порядка, и гуманитарную эстетику.

Здравствуйте, дорогие читатели!

Золотое сечение - что это такое? Числа Фибоначчи - это ? В статье - ответы на эти вопросы кратно и понятно, простыми словами.

Эти вопросы вот уже несколько тысячелетий будоражат умы всё новых и новых поколений! Оказывается математика может быть не скучной, а захватывающей, интересной, завораживающей!

Другие полезные статьи:

Числа Фибоначчи - это что?

Поразителен тот факт, что при делении каждого последующего числа числовой последовательности на предыдущее получается число, стремящееся к 1,618.

Обнаружил эту загадочную последовательность счастливчик математик средневековья Леонардо Пизанский (более известный под именем Фибоначчи) . До него Леонардо да Винчи обнаружил в строении тела человека, растений и животных удивительным образом повторяющуюся пропорцию Фи = 1,618 . Это число (1,61) ученые еще называют «Числом Бога».


До Леонардо да Винчи эта последовательность чисел была известна в Древней Индии и Древнем Египте . Египетские пирамиды построены с применением пропорции Фи = 1,618.

Но и это еще не все, оказывается законы природы Земли и Космоса каким-то необъяснимым образом подчиняются строгим математическим законам последовательности чисел Фидоначчи .

Например, и ракушка на Земле, и галактика в Космосе построены с применением чисел Фибоначчи. Абсолютное большинство цветов имеет 5, 8, 13 лепестков. В подсолнухе, на стеблях растений, в закрученных вихрях облаков, в водоворотах и даже в графиках изменения курсов валют на Форексе, всюду работают числа Фибоначчи.

Посмотрите простое и занимательное пояснение, что такое последовательность чисел Фибоначчи и Золотое сечение в этом КОРОТКОМ ВИДЕО (6 минут):

Что такое Золотое сечение или Божественная пропорция?

Итак, что такое Золотое сечение или Золотая или Божественная пропорция? Фибоначчи также обнаружил, что последовательность, которая состоит из квадратов чисел Фибоначчи является еще большей загадкой. Попробуем графически изобразить в виде площади последовательность:

1², 2², 3², 5², 8²…


Если вписать спираль в графическое изображение последовательности квадратов чисел Фибоначчи, то мы получим Золотое сечение, по правилам которого построено все во вселенной, включая растения, животных, спираль ДНК, человеческое тело, … Список этот можно продолжать до бесконечности.


Золотое сечение и Числа Фибоначчи в природе ВИДЕО

Предлагаю посмотреть короткий фильм (7 минут), в котором раскрываются некоторые загадки Золотого сечения. При размышлениях о законе чисел Фибоначчи, как о первостепенном законе, который управляет живой и неживой природой, появляется вопрос: Эта идеальная формула для макромира и микромира возникла сама или ее кто-то создал и удачно применил?

Что ВЫ думаете по этому поводу? Давайте вместе подумаем над этой загадкой и быть может мы приблизимся к .

Очень надеюсь, что статья была полезной для Вас и Вы узнали, что это такое Золотое сечение *и Числа Фибоначчи ? До новых встреч на страницах блога, подписывайтесь на блог. Форма подписки — под статьей.

Всем желаю много новых идей и вдохновения для их реализации!

Последовательность Фибоначчи, ставшая известной большинству благодаря фильму и книге «Код да Винчи», это ряд чисел, выведенный итальянским математиком Пизанским Леонардо, более известным под псевдонимом Фибоначчи, в тринадцатом веке. Последователи ученого заметили, что формула, которой подчинен данный ряд цифр, находит свое отображение в окружающем нас мире и перекликается с другими математическими открытиями, тем самым открывая для нас дверь в тайны мироздания. В этой статье мы расскажем, что такое последовательность Фибоначчи, рассмотрим примеры отображения этой закономерности в природе, а также сравним с другими математическими теориями.

Формулировка и определение понятия

Ряд Фибоначчи - это математическая последовательность, каждый элемент которой равен сумме двух предыдущих. Обозначим некой член последовательности как х n. Таким образом, получим формулу, справедливую для всего ряда: х n+2 =х n +х n+1. При этом порядок последовательности будет выглядеть так: 1, 1, 2, 3, 5, 8, 13, 21, 34. Следующим числом будет 55, так как сумма 21 и 34 равна 55. И так далее по такому же принципу.

Примеры в окружающей среде

Если мы посмотрим на растение, в частности, на крону из листьев, то заметим, что они распускаются по спирали. Между соседними листьями образуются углы, которые, в свою очередь, образуют правильную математическую последовательность Фибоначчи. Благодаря этой особенности каждый отдельно взятый листочек, который растет на дереве, получает максимальное количество солнечного света и тепла.

Математическая загадка Фибоначчи

Известный математик представил свою теорию в виде загадки. Звучит она следующим образом. Можно поместить пару кроликов в замкнутое пространство для того, чтобы узнать, какое количество пар кроликов родится в течении одного года. Учитывая природу этих животных, то, что каждый месяц пара способна производить на свет новую пару, а готовность к размножению у них появляется по достижении двух месяцев, в итоге он получил свой знаменитый ряд чисел: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 - где показано количество новых пар кроликов в каждом месяце.

Последовательность Фибоначчи и пропорциональное соотношение

Этот ряд имеет несколько математических нюансов, которые обязательно нужно рассмотреть. Он, приближаясь медленнее и медленнее (асимптотически), стремится к некоему пропорциональному соотношению. Но оно иррациональное. Другими словами, представляет собой число с непредсказуемой и бесконечной последовательностью десятичных чисел в дробной части. Например, соотношение любого элемента ряда варьируется около цифры 1,618, то превосходя, то достигая его. Следующее по аналогии приближается к 0,618. Что есть обратно пропорциональным к числу 1,618. Если мы поделим элементы через один, то получим 2,618 и 0,382. Как вы уже поняли, они также являются обратно пропорциональными. Полученные числа называются коэффициентами Фибоначчи. А теперь объясним, для чего мы выполняли эти вычисления.

Золотое сечение

Все окружающие нас предметы мы различаем по определенным критериям. Один из них - форма. Какие-то нас привлекают больше, какие-то меньше, а некоторые и вовсе не нравятся. Замечено, что симметричный и пропорциональный объект гораздо легче воспринимается человеком и вызывает чувство гармонии и красоты. Цельный образ всегда включает в себя части различного размера, которые находятся в определенном соотношении друг с другом. Отсюда вытекает ответ на вопрос о том, что называют Золотым сечением. Данное понятие означает совершенство соотношений целого и частей в природе, науке, искусстве и т. д. С математической точки зрения рассмотрим следующий пример. Возьмем отрезок любой длины и разделим его на две части таким образом, чтобы меньшая часть относилась к большей как сумма (длина всего отрезка) к большей. Итак, примем отрезок с за величину один. Его часть а будет равна 0,618, вторая часть b , выходит, равна 0,382. Таким образом, мы соблюдаем условие Золотого сечения. Отношение отрезка c к a равняется 1,618. А отношение частей c и b - 2,618. Получаем уже известные нам коэффициенты Фибоначчи. По такому же принципу строятся золотой треугольник, золотой прямоугольник и золотой кубоид. Стоит также отметить, что пропорциональное соотношение частей тела человека близко к Золотому сечению.

Последовательность Фибоначчи - основа всего?

Попробуем объединить теорию Золотого сечения и известного ряда итальянского математика. Начнем с двух квадратов первого размера. Затем сверху добавим еще квадрат второго размера. Подрисуем рядом такую же фигуру с длиной стороны, равной сумме двух предыдущих сторон. Аналогичным образом рисуем квадрат пятого размера. И так можно продолжать до бесконечности, пока не надоест. Главное, чтобы величина стороны каждого последующего квадрата равнялась сумме величин сторон двух предыдущих. Получаем серию многоугольников, длина сторон которых является числами Фибоначчи. Эти фигуры называются прямоугольниками Фибоначчи. Проведем плавную линию через углы наших многоугольников и получим… спираль Архимеда! Увеличение шага данной фигуры, как известно, всегда равномерно. Если включить фантазию, то полученный рисунок можно проассоциировать с раковиной моллюска. Отсюда можем сделать вывод, что последовательность Фибоначи - это основа пропорциональных, гармоничных соотношений элементов в окружающем мире.

Математическая последовательность и мироздание

Если присмотреться, то спираль Архимеда (где-то явно, а где-то завуалированно) и, следовательно, принцип Фибоначчи прослеживаются во многих привычных природных элементах, окружающих человека. Например, все та же раковина моллюска, соцветия обычной брокколи, цветок подсолнечника, шишка хвойного растения и тому подобное. Если заглянем подальше, то увидим последовательность Фибоначчи в бесконечных галактиках. Даже человек, вдохновляясь от природы и перенимая ее формы, создает предметы, в которых прослеживается вышеупомянутый ряд. Тут самое время вспомнить и о Золотом сечении. Наряду с закономерностью Фибоначчи прослеживаются принципы данной теории. Существует версия, что последовательность Фибоначчи - это своего рода проба природы адаптироваться к более совершенной и фундаментальной логарифмической последовательности Золотого сечения, которая практически идентична, но не имеет своего начала и бесконечна. Закономерность природы такова, что она должна иметь свою точку отсчета, от чего отталкиваться для создания чего-то нового. Отношение первых элементов ряда Фибоначчи далеки от принципов Золотого сечения. Однако чем дальше мы его продолжаем, тем больше это несоответствие сглаживается. Для определения последовательности необходимо знать три его элемента, которые идут друг за другом. Для Золотой последовательности же достаточно и двух. Так как она является одновременно арифметической и геометрической прогрессией.

Заключение

Все-таки, исходя из вышесказанного, можно задать вполне логичные вопросы: "Откуда появились эти числа? Кто этот автор устройства всего мира, попытавшийся сделать его идеальным? Было ли всегда все так, как он хотел? Если да, то почему возник сбой? Что будет дальше?" Находя ответ на один вопрос, получаешь следующий. Разгадал его - появляются еще два. Решив их, получаешь еще три. Разобравшись с ними, получишь пять нерешенных. Затем восемь, далее тринадцать, двадцать один, тридцать четыре, пятьдесят пять…

Совместно с издательством « » мы публикуем отрывок из книги профессора прикладной математики Эдварда Шейнермана «Путеводитель для влюблённых в математику », посвященной нестандартным вопросам увлекательной математики, головоломкам, Вселенной чисел и фигур. Перевод с английского Алексея Огнёва.

Эта глава повествует о знаменитых числах Фибоначчи: 1, 1, 2, 3, 5, 8, 13, 21 и т. д. Этот ряд был назван в честь Леонардо Пизанского, больше известного как Фибоначчи. Леонардо Пизанский (1170–1250) - один из первых крупных математиков средневековой Европы. Прозвище Фибоначчи означает «сын Боначчи». Автор «Книги абака», излагающей десятичную систему счисления.

Квадраты и домино

Начнем с укладки квадратов и домино. Вообразим длинную горизонтальную рамку размерами 1 × 10. Мы хотим полностью заполнить ее квадратами 1 × 1 и костяшками домино 1 × 2, не оставив ни единой щели. Вот картинка:

Вопрос: сколькими способами это можно сделать?

Для удобства обозначим число вариантов F10. Перебирать их все и потом пересчитывать - тяжелый труд, чреватый ошибками. Гораздо лучше упростить задачу. Не будем с места в карьер искать F10, начнем с F1. Это проще простого! Нам нужно заполнить рамку 1 × 1 квадратами 1 × 1 и костяшками домино 1 × 2. Домино не поместится, остается единственное решение: взять один квадрат. Другими словами, F1 = 1.

Теперь разберемся с F2. Размер рамки 1 × 2. Можно заполнить ее двумя квадратами или одной костяшкой домино. Таким образом, есть два варианта, и F2 = 2.

Дальше: сколькими способами можно заполнить рамку 1 × 3? Первый вариант: три квадрата. Два других варианта: одна костяшка домино (две не влезут) и квадрат слева или справа. Итак, F3 = 3. Еще один шаг: возьмем рамку 1 × 4. На рисунке показаны все варианты заполнения:

Мы нашли пять возможностей, но где гарантия, что мы ничего не упустили? Есть способ проверить себя. В левом конце рамки может быть или квадрат, или костяшка домино. В верхнем ряду на рисунке - варианты, когда слева квадрат, в нижнем ряду - когда слева домино.

Допустим, слева квадрат. Оставшуюся часть нужно заполнить квадратами и домино. Другими словами, нужно заполнить рамку 1 × 3. Это дает 3 варианта, так как F3 = 3. Если слева домино, размер оставшейся части 1 × 2, и заполнить ее можно двумя вариантами, так как F2 = 2.

Таким образом, у нас есть 3 + 2 = 5 вариантов, и мы удостоверились, что F4 = 5.

Теперь ваша очередь. Подумайте пару минут и найдите все варианты заполнения для рамки 1 × 5. Их немного. Решение - в конце главы. Можете отвлечься и подумать.

Вернемся к нашим квадратам. Хочется верить, что вы нашли 8 вариантов, так как есть 5 способов укладки, где слева квадрат, и еще 3 способа, где слева домино. Таким образом, F5 = 8.

Подытожим. Мы обозначили FN количество способов заполнения рамки 1 × n квадратами и костяшками домино. Нам необходимо найти F10. Вот что мы уже знаем:

Двигаемся дальше. Чему равно F6? Можно нарисовать все варианты, но это скучно. Лучше разобьем вопрос на две части. Сколькими способами можно заполнить рамку 1 × 6, если слева (a) квадрат и (b) костяшка домино? Хорошая новость: мы уже знаем ответ! В первом случае нам остается пять квадратов, а мы знаем, что F5 = 8. Во втором случае нужно заполнить четыре квадрата; нам известно, что F4 = 5. Таким образом, F5 + F4 = 13.

Чему равно F7? Исходя из тех же соображений, F7 =F6+F5=13+8=21. А как насчет F8? Очевидно, F8 = F7 + F6 = 21 + 13 = 34. И так далее. Мы обнаружили следующую взаимосвязь: Fn = Fn-1 + Fn-2.

Еще несколько шагов - и мы найдем искомое число F10. Правильный ответ - в конце главы.

Числа Фибоначчи

Числа Фибоначчи - это последовательность:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

Она выстраивается по таким правилам:

― первые два числа 1 и 1;

― каждое следующее число получаем сложением двух предыдущих.

Будем обозначать n-ный элемент последовательности Fn, начиная с нуля: F0 = 1, F1 = 1, F2 = 2, F3 = 3, F4 = 5, … Очередной элемент мы вычисляем по формуле: Fn = Fn-1 + Fn-2.

Как мы видим, задача об укладке квадратов и домино привела нас к последовательности чисел Фибоначчи [1 ]В задаче о квадратах и домино мы выяснили: F1 = 1, а F2 = 2. Но числа Фибоначчи начинаются с F0 = 1. Как это согласуется с условиями задачи? Сколько существует способов заполнить на тех же условиях рамку 0 × 1? Длина квадрата и длина костяшки домино, как ни крути, больше нуля, потому есть искушение сказать, что ответ равен нулю, но это не так. Прямоугольник 0 × 1 уже заполнен, там нет щелей; нам не понадобится ни квадрат, ни костяшка домино. Таким образом, есть всего один способ действия: не брать ни квадрата, ни костяшки домино. Понимаете? В таком случае я вас поздравляю. У вас душа математика!

Сумма чисел Фибоначчи

Попробуем сложить первые несколько чисел Фибоначчи. Что мы можем сказать о сумме F0 + F1 +… + Fn для любого n? Давайте проделаем кое-какие вычисления и посмотрим, что получится. Обратите внимание на результаты сложения внизу. Видите ли вы закономерность? Повремените немного, прежде чем двигаться дальше: будет лучше, если вы найдете ответ самостоятельно, а не прочтете уже готовое решение.

Хочется верить, вы увидели, что результаты суммирования, если к ним приплюсовать по единице, тоже выстраиваются в последовательность чисел Фибоначчи. Например, сложение чисел от F0 до F5 дает: F0 + F1 + F2 + F3 + F4 + F5 = 1 + 1 + 2 + 3 + 5 + 8 = 20 = F7 - 1. Сложение чисел от F0 до F6 дает 33, что на единицу меньше F8 = 34. Мы можем записать формулу для неотрицательных целых чисел n: F0 +F1 +F2 +…+Fn =Fn+2 –1. (*)

Вероятно, лично вам достаточно будет увидеть, что формула [* ]F0 +F1 +F2 +…+Fn =Fn+2 –1. . работает в дюжине случаев, чтобы вы поверили, что она верна, но математики жаждут доказательств. Мы рады представить вам два возможных доказательства того, что она верна для всех неотрицательных целых чисел n.

Первое называется доказательством по индукции, второе - комбинаторным доказательством.

Доказательство по индукции

Формула [* ]F0 +F1 +F2 +…+Fn =Fn+2 –1. представляет собой бесконечно много формул в свернутом виде. Доказать, что [* ]F0 +F1 +F2 +…+Fn =Fn+2 –1. верно для конкретного значения n, скажем для n = 6, - простая арифметическая задача. Достаточно будет записать числа от F0 до F6 и сложить их: F0 +F2 +…+F6 =1+1+2+3+5+8+13=33.

Несложно увидеть, что F8 = 34, поэтому формула действует. Перейдем к F7. Не будем тратить время и складывать все числа: мы уже знаем сумму вплоть до F6. Таким образом, (F0 +F1 +…+F6)+F7 =33+21=54. Как и раньше, все сходится: F9 = 55.

Если сейчас мы начнем проверять, работает ли формула для n = 8, наши силы окончательно иссякнут. Но все же посмотрим, что мы уже знаем и что хотим выяснить:

F0 +F1 +…+F7 =F9.

F0 +F1 +…+F7 +F7 =?

Воспользуемся предыдущим результатом: (F0 +F1 +…+F7)+F8 =(F9-1)+F8.

Мы, конечно, можем вычислить (F9-1) + F8 арифметически. Но так мы устанем еще больше. В то же время мы знаем, что F8 + F9 = F10. Таким образом, нам не нужно ничего высчитывать или заглядывать в таблицу чисел Фибоначчи:

(F0 + F1 +… + F7) + F8 = (F9-1) + F8 = (F8 + F9-1) = F10-1.

Мы удостоверились, что формула работает для n = 8, на основе того, что знали про n = 7.

В случае n = 9 мы точно так же опираемся на результат для n = 8 (убедитесь в этом самостоятельно). Разумеется, доказав верность [* ]F0 +F1 +F2 +…+Fn =Fn+2 –1. для n, мы можем быть уверены, что [* ]F0 +F1 +F2 +…+Fn =Fn+2 –1. верно и для n + 1.

Мы готовы дать полное доказательство. Как уже было сказано, [* ]F0 +F1 +F2 +…+Fn =Fn+2 –1. представляет собой бесконечное количество формул для всех значений n от нуля до бесконечности. Посмотрим, как работает доказательство.

Вначале мы доказываем [* ]F0 +F1 +F2 +…+Fn =Fn+2 –1. в простейшем случае, для n = 0. Мы просто проверяем, что F0 = F0+2 - 1. Так как F0 = 1, а F2 = 2, очевидным образом 1 = 2 - 1, а F0 = F2-1.

Дальше нам достаточно показать, что верность формулы для одного значения n (скажем, n = k) автоматически означает верность для n + 1 (в нашем примере n = k + 1). Нам лишь надо продемонстрировать, как устроено это «автоматически». Что нам нужно сделать?

Возьмем некоторое число k. Предположим, мы уже знаем, что F0+F1+…+Fk =Fk+2–1. Мы ищем величину F0 + F1 +… + Fk + Fk+1.

Мы уже знаем сумму чисел Фибоначчи вплоть до Fk, поэтому у нас получается:

(F0+F1+…+Fk)+Fk+1 =(Fk+2–1)+Fk+1.

Правая часть равна Fk+2 - 1 + Fk+1, и мы знаем, чему равна сумма следующих друг за другом чисел Фибоначчи:

Fk+2–1 + Fk+1 = (Fk+2 + Fk+1) - 1 = Fk+3– 1

Подставим в наше равенство:

(F0+F1+…+Fk)+Fk+1 =Fk+3–1

Сейчас я объясню, что мы сделали. Если мы знаем, что [* ]F0 +F1 +F2 +…+Fn =Fn+2 –1. верно, когда мы суммируем числа вплоть до Fk, тогда [* ]F0 +F1 +F2 +…+Fn =Fn+2 –1. должно быть верно, если мы приплюсуем Fk+1.

Подытожим:

Формула [* ]F0 +F1 +F2 +…+Fn =Fn+2 –1. верна для n = 0.

Если формула [* ]F0 +F1 +F2 +…+Fn =Fn+2 –1. верна для n, она верна и для n + 1.

Мы можем уверенно сказать, что [* ]F0 +F1 +F2 +…+Fn =Fn+2 –1. верно для любых значений n. Верно ли [* ]F0 +F1 +F2 +…+Fn =Fn+2 –1. для n = 4987? Это так, если выражение верно для n = 4986, что основано на верности выражения для n = 4985, и так далее до n = 0. Следовательно, формула [* ]F0 +F1 +F2 +…+Fn =Fn+2 –1. верна для всех возможных значений. Этот метод доказательства известен под названием математическая индукция (или доказательство по индукции) . Мы проверяем базовый случай и даем шаблон, по которому каждый следующий случай может быть доказан на основе предыдущего.

Комбинаторное доказательство

А вот совершенно другое доказательство тождества [* ]F0 +F1 +F2 +…+Fn =Fn+2 –1. . Основной подход тут - воспользоваться тем фактом, что число Fn - это количество способов облицевать прямоугольник 1 × n квадратами и костяшками домино.

Напомню, что нам нужно доказать:

F0 + F1 + F2 +… + Fn = Fn+2- 1. (*)

Идея заключается в том, чтобы рассматривать обе части уравнения как решение задачи с облицовкой. Если мы докажем, что левая и правая часть - решение для одного и того же прямоугольника, они совпадут между собой. Эта техника носит название комбинаторного доказательства[2 ]Слово «комбинаторный» образовано от существительного «комбинаторика» - названия раздела математики, предметом которого является подсчет вариантов в задачах, схожих с облицовкой прямоугольника. Слово «комбинаторика», в свою очередь, образовано от слова «комбинации». .

На какой вопрос по комбинаторике уравнение [* ]F0 +F1 +F2 +…+Fn =Fn+2 –1. дает два верных ответа? Эта головоломка похожа на те, что встречаются в шоу Jeopardy! [3 ]Популярная в США телевикторина. Аналоги Jeopardy! выходят в разных странах; в России это - «Своя игра». - Прим. ред. , где участники должны формулировать вопрос, заранее зная правильный ответ.

Правая часть выглядит проще, поэтому начнем с нее. Ответ: Fn+2– 1. Каков вопрос? Если бы ответ был равен просто Fn+2, мы с легкостью сформулировали бы вопрос: сколькими способами можно облицевать прямоугольник 1 × (n + 2) с помощью квадратов и костяшек домино? Это почти то, что нужно, но ответ меньше на единицу. Попробуем мягко поменять вопрос и уменьшить ответ. Уберем один вариант облицовки и пересчитаем оставшиеся. Сложность состоит в том, чтобы найти один вариант, который кардинально отличается от остальных. Есть ли такой?

Каждый способ облицовки подразумевает использование квадратов или домино. Только квадраты задействованы в единственном варианте, в прочих есть хотя бы одна костяшка домино. Возьмем это за основу нового вопроса.

Вопрос: Сколько существует вариантов облицовки квадратами и костяшками домино прямоугольной рамки 1 × (n + 2), включающих по меньшей мере одну костяшку домино?

Сейчас мы найдем два ответа на этот вопрос. Так как оба будут верны, между числами мы сможем уверенно поставить знак равенства.

Один из ответов мы уже обсуждали. Есть Fn+2 вариантов укладки. Только один из них подразумевает использование исключительно квадратов, без домино. Таким образом, ответ № 1 на наш вопрос таков: Fn+2– 1.

Второй ответ должен быть - я надеюсь - левой частью уравнения [* ]F0 +F1 +F2 +…+Fn =Fn+2 –1. . Посмотрим, как это работает.

Нужно пересчитать варианты заполнения рамки, включающие хотя бы одну костяшку домино. Давайте подумаем, где будет расположена самая первая костяшка. Есть n + 2 позиций, и первая костяшка может располагаться в позициях от 1 до n + 1.

Рассмотрим случай n = 4. Мы ищем варианты заполнения рамки 1 × 6, задействующие хотя бы одну костяшку домино. Мы знаем ответ: F6 - 1 = 13 - 1 = 12, но нам необходимо получить его иным путем.

Первая костяшка домино может занимать следующие позиции:

Первая колонка демонстрирует случай, когда костяшка находится на первой позиции, вторая - когда костяшка на второй, и т. д.

Сколько вариантов в каждой колонке?

В первой колонке - пять вариантов. Если отбросить домино слева, мы получим ровно F4 = 5 вариантов для прямоугольника 1 × 4. Во второй колонке - три варианта. Отбросим домино и квадрат слева. Мы получим F3 = 3 варианта для прямоугольника 1 × 3. Аналогично для других колонок. Вот что мы обнаружили:

Таким образом, количество способов замостить квадратами и домино (хотя бы одной костяшкой) прямоугольную рамку 1 × 6 равно F4 + F3 + F2 + F1 + F0 = 12.

Вывод: F0+F1+F2+F3+F4=12=F6–1.

Рассмотрим общий случай. Нам дана рамка длиной n + 2. Сколько есть вариантов ее заполнения, при которых первая костяшка домино находится на некой позиции k? В этом случае первые k - 1 позиций заняты квадратами. Таким образом, в общей сложности занята k + 1 позиция [4 ]Число k может принимать значения от 1 до n + 1, но не больше, потому что иначе последняя костяшка домино высунется за пределы рамки. . Оставшиеся (n + 2) - (k + 1) = n - k + 1 можно заполнить любыми способами. Это дает Fn-k+1 вариантов. Построим диаграмму:

Если k меняется от 1 до n + 1, величина n - k + 1 меняется от 0 до n. Таким образом, количество вариантов заполнения нашей рамки с использованием хотя бы одной костяшки домино равно Fn + Fn-1 +… + F1 + F0.

Если поставить слагаемые в обратном порядке, мы получим левую часть выражения (*). Таким образом, мы нашли второй ответ на поставленный вопрос: F0 +F1 +…+Fn.

Итак, у нас есть два ответа на вопрос. Величины, полученные с помощью двух выведенных нами формул, совпадают, и тождество [* ]F0 +F1 +F2 +…+Fn =Fn+2 –1. доказано.

Соотношение чисел Фибоначчи и золотое сечение

Сложение двух следующих друг за другом чисел Фибоначчи дает очередное число Фибоначчи. В этом разделе мы затронем вопрос поинтереснее: что будет, если мы поделим число Фибоначчи на предшествующее ему в ряду? Посчитаем соотношение Fk1. Для возрастающих значений k.

В таблице вы можете видеть соотношения от F1/F0 до F20/19.

Чем больше становятся числа Фибоначчи, тем ближе соотношение Fk+1/Fk к константе, примерно равной 1,61803. Это число - вы будете удивлены - достаточно известное, и если вы введете его в поисковую систему, вывалится уйма страниц о золотом сечении. Что это такое? Соотношение соседних чисел Фибоначчи не одинаково. Однако оно почти одинаково, если числа достаточно велики. Давайте найдем формулу для числа 1,61803 и для этого на время будем считать, что все соотношения одинаковы. Введем обозначение x:

x=Fk+1/ Fk=/ Fk+2/ Fk+1= Fk+3/ Fk+2=…

Это значит, что Fk+1 = xFk, Fk+2 = xFk+1 и т. д. Можно переформулировать:

Fk+2 =xFk+1=x2>Fk.

Но мы же знаем, что Fk+2= Fk+1 + Fk. Таким образом, x2>FkFk = xFk + Fk.

Если мы поделим обе части на Fk и перегруппируем слагаемые, то получим квадратное уравнение: x2-x-1=0. Оно имеет два решения:

Соотношение должно быть положительным. И вот мы получили знакомое нам число. Обычно для обозначения золотого сечения используют греческую букву φ (фи):

Мы уже приметили, что соотношение соседних чисел Фибоначчи приближается (стремится) к φ. Это замечательно. Это дает нам еще один способ вычислять приблизительные значения чисел Фибоначчи. Последовательность чисел Фибоначчи - это ряд F0 F1, F2, F3, F4, F5… Если все соотношения Fk+1/Fk будут одинаковы, мы получим формулу:

Здесь с - еще одна константа. Сравним округленные значения Fn и φn для разных n:

Для больших значений n соотношение Fn/ φn≈0,723607. Это число равно в точности φ/корень5. Другими словами,

Обратите внимание: если округлить до ближайшего целого числа, мы получим в точности Fn.

Если вы не хотите утруждать себя округлениями до целого числа, то формула, названная названная в честь Жака Бине [5 ]Жак Бинe (1786–1856) - французский математик, механик и астроном. Формула для чисел Фибоначчи названа в честь Бине, хотя почти на сто лет раньше ее вывел Абрахам де Муавр (1667–1754). - Прим. пер. , даст вам точное значение:

Заполнение рамки 1 × 5

Нашу рамку можно заполнить квадратами и домино следующими способами:

Есть F4 = 5 вариантов, когда вначале стоит квадрат, и F3 = 3 варианта, когда вначале стоит костяшка домино. В общей сложности это дает F5 = F4 + F3 = 8 вариантов.

Величина F10 (ответ на следующий вопрос, касающийся укладки) равна 89.