Утеплители Изоляция Блоки

Нормальное распределение случайной величины мат ожидание. Нормальный закон распределения непрерывной случайной величины. Нормальный закон распределения вероятностей

Случайная величина называется распределенной по нормальному (Гауссовскому) закону с параметрами аи () , если плотность распределения вероятностей имеет вид

Величина, распределенная по нормальному закону, всегда имеет бесчисленное множество возможных значений, поэтому ее удобно изображать графически, с помощью графика плотности распределения. Согласно формуле

вероятность того, что случайная величина примет значение из интервала равна площади под графиком функции на этом интервале (геометрический смысл определенного интеграла). Рассматриваемая функция неотрицательна и непрерывна. График функ­ции имеет вид колокола и называется кривой Гаусса или нормальной кривой.

На рисунке изображено несколько кривых плотности распределения случайной величины, заданной по нормальному закону.

Все кривые имеют одну точку максимума, при удалении от которой вправо и влево кривые убывают. Максимум достигается при и равен .

Кривые симметричны относительно вертикальной прямой, проведенной через наивысшую точку. Площадь подграфика каждой кривой равна 1.

Различие отдельных кривых распределения состоит лишь в том, что суммарная площадь подграфика, одна и та же для всех кривых, различным образом распределена между различными участками. Основная часть площади подграфика любой кривой сосредоточена в непосредственной близости наивероятнейшего значения , а это значение у всех трех кривых разное. При различных значениях и а получаются различные нормальные законы и различные графики плотности функции распределения.

Теоретические исследования показали, что большинство встречающихся на практике случайных величин имеет нормальный закон распределения. По этому закону распределяется скорость газовых молекул, вес новорожденных, размер одежды и обуви населения страны и много других случайных событий физической и биологической природы. Впервые эту закономерность заметил и теоретически обосновал А. Муавр.

При , функция совпадает с функцией , о которой уже шла речь в локальной предельной теореме Муавра–Лапласа. Плотность вероятности нормального распределения легко выражаетсячерез :

При таких значениях параметров нормальный закон называется основным .

Функция распределения для нормированной плотности называется функцией Лапласа и обозначается Φ(х) . Мы также уже встречались с этой функцией.

Функция Лапласа не зависит от конкретных параметров а и σ. Для функции Лапласа, с помощью методов приближенного интегрирования составлены таблицы значений на проме­жутке с разной степенью точности. Очевидно, что функция Лапласа является нечетной, следовательно, нет необходимости помещать в таблицу ее значения при отрицательных .



Для случайной величины, распределенной по нормальному закону с параметрами а и , математическое ожидание и дисперсия вычисляются по формулам: , .Среднее квадратическое отклонение равно .

Вероятность того, что нормально распределенная величина примет значение из интервала , равна

где есть функция Лапласа, введенная в интегральной предельной теореме.

Часто в задачах требуется вычислить вероятность того, что отклонение нормально распределенной случайной величины X от своего математического ожидания по абсолютной величине не превосходит некоторого значения , т.е. вычислить вероятность . Применяя формулу (19.2), имеем:

В заключение приведем одно важное следствие из формулы (19.3). Положим в этой формуле . Тогда , т.е. вероятность того, что абсолютная величина отклонения X от своего математического ожидания не превысит , равна 99,73%. Практически такое событие можно считать достоверным. В этом и состоит сущность правила трех сигм.

Правило трех сигм. Если случайная величина распределена нормально, то абсолютная величина ее отклонения от математического ожидания практически не превосходит утроенного среднего квадратического отклонения.

Нормальный закон распределения вероятностей

Без преувеличения его можно назвать философским законом. Наблюдая за различными объектами и процессами окружающего мира, мы часто сталкиваемся с тем, что чего-то бывает мало, и что бывает норма:


Перед вами принципиальный вид функции плотности нормального распределения вероятностей, и я приветствую вас на этом интереснейшем уроке.

Какие можно привести примеры? Их просто тьма. Это, например, рост, вес людей (и не только), их физическая сила, умственные способности и т.д. Существует «основная масса» (по тому или иному признаку) и существуют отклонения в обе стороны.

Это различные характеристики неодушевленных объектов (те же размеры, вес). Это случайная продолжительность процессов, например, время забега стометровки или превращения смолы в янтарь. Из физики вспомнились молекулы воздуха: среди них есть медленные, есть быстрые, но большинство двигаются со «стандартными» скоростями.

Далее отклоняемся от центра ещё на одно стандартное отклонение и рассчитываем высоту:

Отмечаем точки на чертеже (зелёный цвет) и видим, что этого вполне достаточно.

На завершающем этапе аккуратно чертим график, и особо аккуратно отражаем его выпуклость / вогнутость ! Ну и, наверное, вы давно поняли, что ось абсцисс – это горизонтальная асимптота , и «залезать» за неё категорически нельзя!

При электронном оформлении решения график легко построить в Экселе, и неожиданно для самого себя я даже записал короткий видеоролик на эту тему. Но сначала поговорим о том, как меняется форма нормальной кривой в зависимости от значений и .

При увеличении или уменьшении «а» (при неизменном «сигма») график сохраняет свою форму и перемещается вправо / влево соответственно. Так, например, при функция принимает вид и наш график «переезжает» на 3 единицы влево – ровнехонько в начало координат:


Нормально распределённая величина с нулевым математическим ожиданием получила вполне естественное название – центрированная ; её функция плотности чётная , и график симметричен относительно оси ординат.

В случае изменения «сигмы» (при постоянном «а») , график «остаётся на месте», но меняет форму. При увеличении он становится более низким и вытянутым, словно осьминог, растягивающий щупальца. И, наоборот, при уменьшении график становится более узким и высоким – получается «удивлённый осьминог». Так, при уменьшении «сигмы» в два раза: предыдущий график сужается и вытягивается вверх в два раза:

Всё в полном соответствии с геометрическими преобразованиями графиков .

Нормальное распределёние с единичным значением «сигма» называется нормированным , а если оно ещё и центрировано (наш случай), то такое распределение называют стандартным . Оно имеет ещё более простую функцию плотности, которая уже встречалась в локальной теореме Лапласа : . Стандартное распределение нашло широкое применение на практике, и очень скоро мы окончательно поймём его предназначение.

Ну а теперь смотрим кино:

Да, совершенно верно – как-то незаслуженно у нас осталась в тени функция распределения вероятностей . Вспоминаем её определение :
– вероятность того, что случайная величина примет значение, МЕНЬШЕЕ, чем переменная , которая «пробегает» все действительные значения до «плюс» бесконечности.

Внутри интеграла обычно используют другую букву, чтобы не возникало «накладок» с обозначениями, ибо здесь каждому значению ставится в соответствие несобственный интеграл , который равен некоторому числу из интервала .

Почти все значения не поддаются точному расчету, но как мы только что видели, с современными вычислительными мощностями с этим нет никаких трудностей. Так, для функции стандартного распределения соответствующая экселевская функция вообще содержит один аргумент:

=НОРМСТРАСП(z)

Раз, два – и готово:

На чертеже хорошо видно выполнение всех свойств функции распределения , и из технических нюансов здесь следует обратить внимание на горизонтальные асимптоты и точку перегиба .

Теперь вспомним одну из ключевых задач темы, а именно выясним, как найти –вероятность того, что нормальная случайная величина примет значение из интервала . Геометрически эта вероятность равна площади между нормальной кривой и осью абсцисс на соответствующем участке:

но каждый раз вымучивать приближенное значение неразумно, и поэтому здесь рациональнее использовать «лёгкую» формулу :
.

! Вспоминает также , что

Тут можно снова задействовать Эксель, но есть пара весомых «но»: во-первых, он не всегда под рукой, а во-вторых, «готовые» значения , скорее всего, вызовут вопросы у преподавателя. Почему?

Об этом я неоднократно рассказывал ранее: в своё время (и ещё не очень давно) роскошью был обычный калькулятор, и в учебной литературе до сих пор сохранился «ручной» способ решения рассматриваемой задачи. Его суть состоит в том, чтобы стандартизировать значения «альфа» и «бета», то есть свести решение к стандартному распределению:

Примечание : функцию легко получить из общего случая с помощью линейной замены . Тогда и:

и из проведённой замены как раз следует формула перехода от значений произвольного распределения – к соответствующим значениям стандартного распределения.

Зачем это нужно? Дело в том, что значения скрупулезно подсчитаны нашими предками и сведены в специальную таблицу, которая есть во многих книгах по терверу. Но ещё чаще встречается таблица значений , с которой мы уже имели дело в интегральной теореме Лапласа :

Если же в нашем распоряжении есть таблица значений функции Лапласа , то решаем через неё:

Дробные значения традиционно округляем до 4 знаков после запятой, как это сделано в типовой таблице. И для контроля есть Пункт 5 макета .

Напоминаю, что , и во избежание путаницы всегда контролируйте , таблица КАКОЙ функции перед вашими глазами.

Ответ требуется дать в процентах, поэтому рассчитанную вероятность нужно умножить на 100 и снабдить результат содержательным комментарием:

– с перелётом от 5 до 70 м упадёт примерно 15,87% снарядов

Тренируемся самостоятельно:

Пример 3

Диаметр подшипников, изготовленных на заводе, представляет собой случайную величину, распределенную нормально с математическим ожиданием 1,5 см и средним квадратическим отклонением 0,04 см. Найти вероятность того, что размер наугад взятого подшипника колеблется от 1,4 до 1,6 см.

В образце решения и далее я буду использовать функцию Лапласа, как самый распространённый вариант. Кстати, обратите внимание, что согласно формулировке, здесь можно включить концы интервала в рассмотрение. Впрочем, это не критично.

И уже в этом примере нам встретился особый случай – когда интервал симметричен относительно математического ожидания. В такой ситуации его можно записать в виде и, пользуясь нечётностью функции Лапласа, упростить рабочую формулу:


Параметр «дельта» называют отклонением от математического ожидания, и двойное неравенство можно «упаковывать» с помощью модуля :

– вероятность того, что значение случайной величины отклонится от математического ожидания менее чем на .

Хорошо то решение, которое умещается в одну строчку:)
– вероятность того, что диаметр наугад взятого подшипника отличается от 1,5 см не более чем на 0,1 см.

Результат этой задачи получился близким к единице, но хотелось бы ещё бОльшей надежности – а именно, узнать границы, в которых находится диаметр почти всех подшипников. Существует ли какой-нибудь критерий на этот счёт? Существует! На поставленный вопрос отвечает так называемое

правило «трех сигм»

Его суть состоит в том, что практически достоверным является тот факт, что нормально распределённая случайная величина примет значение из промежутка .

И в самом деле, вероятность отклонения от матожидания менее чем на составляет:
или 99,73%

В «пересчёте на подшипники» – это 9973 штуки с диаметром от 1,38 до 1,62 см и всего лишь 27 «некондиционных» экземпляров.

В практических исследованиях правило «трёх сигм» обычно применяют в обратном направлении: если статистически установлено, что почти все значения исследуемой случайной величины укладываются в интервал длиной 6 стандартных отклонений, то появляются веские основания полагать, что эта величина распределена по нормальному закону. Проверка осуществляется с помощью теории статистических гипотез .

Продолжаем решать суровые советские задачи:

Пример 4

Случайная величина ошибки взвешивания распределена по нормальному закону с нулевым математическим ожиданием и стандартным отклонением 3 грамма. Найти вероятность того, что очередное взвешивание будет проведено с ошибкой, не превышающей по модулю 5 грамм.

Решение очень простое. По условию, и сразу заметим, что при очередном взвешивании (чего-то или кого-то) мы почти 100% получим результат с точностью до 9 грамм. Но в задаче фигурирует более узкое отклонение и по формуле :

– вероятность того, что очередное взвешивание будет проведено с ошибкой, не превышающей 5 грамм.

Ответ :

Прорешанная задача принципиально отличается от вроде бы похожего Примера 3 урока о равномерном распределении . Там была погрешность округления результатов измерений, здесь же речь идёт о случайной погрешности самих измерений. Такие погрешности возникают в связи с техническими характеристиками самого прибора (диапазон допустимых ошибок, как правило, указывают в его паспорте) , а также по вине экспериментатора – когда мы, например, «на глазок» снимаем показания со стрелки тех же весов.

Помимо прочих, существуют ещё так называемые систематические ошибки измерения. Это уже неслучайные ошибки, которые возникают по причине некорректной настройки или эксплуатации прибора. Так, например, неотрегулированные напольные весы могут стабильно «прибавлять» килограмм, а продавец систематически обвешивать покупателей. Или не систематически ведь можно обсчитать. Однако, в любом случае, случайной такая ошибка не будет, и её матожидание отлично от нуля.

…срочно разрабатываю курс по подготовке продавцов =)

Самостоятельно решаем обратную задачу:

Пример 5

Диаметр валика – случайная нормально распределенная случайная величина, среднее квадратическое отклонение ее равно мм. Найти длину интервала, симметричного относительно математического ожидания, в который с вероятностью попадет длина диаметра валика.

Пункт 5* расчётного макета в помощь. Обратите внимание, что здесь не известно математическое ожидание, но это нисколько не мешает решить поставленную задачу.

И экзаменационное задание, которое я настоятельно рекомендую для закрепления материала:

Пример 6

Нормально распределенная случайная величина задана своими параметрами (математическое ожидание) и (среднее квадратическое отклонение). Требуется:

а) записать плотность вероятности и схематически изобразить ее график;
б) найти вероятность того, что примет значение из интервала ;
в) найти вероятность того, что отклонится по модулю от не более чем на ;
г) применяя правило «трех сигм», найти значения случайной величины .

Такие задачи предлагаются повсеместно, и за годы практики мне их довелось решить сотни и сотни штук. Обязательно попрактикуйтесь в ручном построении чертежа и использовании бумажных таблиц;)

Ну а я разберу пример повышенной сложности:

Пример 7

Плотность распределения вероятностей случайной величины имеет вид . Найти , математическое ожидание , дисперсию , функцию распределения , построить графики плотности и функции распределения, найти .

Решение : прежде всего, обратим внимание, что в условии ничего не сказано о характере случайной величины. Само по себе присутствие экспоненты ещё ничего не значит: это может оказаться, например, показательное или вообще произвольное непрерывное распределение . И поэтому «нормальность» распределения ещё нужно обосновать:

Так как функция определена при любом действительном значении , и её можно привести к виду , то случайная величина распределена по нормальному закону.

Приводим. Для этого выделяем полный квадрат и организуем трёхэтажную дробь :


Обязательно выполняем проверку, возвращая показатель в исходный вид:

, что мы и хотели увидеть.

Таким образом:
– по правилу действий со степенями «отщипываем» . И здесь можно сразу записать очевидные числовые характеристики:

Теперь найдём значение параметра . Поскольку множитель нормального распределения имеет вид и , то:
, откуда выражаем и подставляем в нашу функцию:
, после чего ещё раз пробежимся по записи глазами и убедимся, что полученная функция имеет вид .

Построим график плотности:

и график функции распределения :

Если под рукой нет Экселя и даже обычного калькулятора, то последний график легко строится вручную! В точке функция распределения принимает значение и здесь находится

Как было сказано ранее, примерами распределений вероятностей непрерывной случайной величины Х являются:

  • равномерное распределение
  • показательное распределение вероятностей непрерывной случайной величины;
  • нормальное распределение вероятностей непрерывной случайной величины.

Дадим понятие нормального закона распределения, функции распределения такого закона, порядка вычисления вероятности попадания случайной величины Х в определенный интервал.

Показатель Нормальный закон распределения Примечание
Определение Нормальным называется распределение вероятностей непрерывной случайной величины X, плотность которого имеет вид
где m x – математическое ожидание случайной величины Х, σ x – среднее квадратическое отклонение
2 Функция распределения
Вероятность попадания в интервал (а;b)
- интегральная функция Лапласа
Вероятность того, что абсолютная величина отклонения меньше положительного числа δ при m x = 0

Пример решения задачи по теме «Нормальный закон распределения непрерывной случайной величины»

Задача.

Длина X некоторой детали представляет собой случайную величину, распределенную по нормальному закону распределения, и имеет среднее значение 20 мм и среднее квадратическое отклонение – 0,2 мм.
Необходимо:
а) записать выражение плотности распределения;
б) найти вероятность того, что длина детали будет заключена между 19,7 и 20,3 мм;
в) найти вероятность того, что величина отклонения не превышает 0,1 мм;
г) определить, какой процент составляют детали, отклонение которых от среднего значения не превышает 0,1 мм;
д) найти, каким должно быть задано отклонение, чтобы процент деталей, отклонение которых от среднего не превышает заданного, повысился до 54%;
е) найти интервал, симметричный относительно среднего значения, в котором будет находиться X с вероятностью 0,95.

Решение. а) Плотность вероятности случайной величины X, распределенной по нормальному закону находим :

при условии, что m x =20, σ =0,2.

б) Для нормального распределения случайной величины вероятность попасть в интервал (19,7; 20,3) определяется :
Ф((20,3-20)/0,2) – Ф((19,7-20)/0,2) = Ф(0,3/0,2) – Ф(-0,3/0,2) = 2Ф(0,3/0,2) = 2Ф(1,5) = 2*0,4332 = 0,8664.
Значение Ф(1,5) = 0,4332 мы нашли в приложениях, в таблице значений интегральной функции Лапласа Φ(x) (таблица 2 )

в) Вероятность того, что абсолютная величина отклонения меньше положительного числа 0,1 найдем :
Р(|Х-20| < 0,1) = 2Ф(0,1/0,2) = 2Ф(0,5) = 2*0,1915 = 0,383.
Значение Ф(0,5) = 0,1915 мы нашли в приложениях, в таблице значений интегральной функции Лапласа Φ(x) (таблица 2 )

г) Поскольку вероятность отклонения, меньшего 0,1 мм, равна 0,383, то отсюда следует, что в среднем 38,3 детали из 100 окажутся с таким отклонением, т.е. 38,3%.

д) Поскольку процент деталей, отклонение которых от среднего не превышает заданного, повысился до 54%, то Р(|Х-20| < δ) = 0,54. Отсюда следует, что 2Ф(δ/σ) = 0,54, а значит Ф(δ/σ) = 0,27.

Используя приложение (таблица 2 ), находим δ/σ = 0,74. Отсюда δ = 0,74*σ = 0,74*0,2 = 0,148 мм.

е) Поскольку искомый интервал симметричен относительно среднего значения m x = 20, то его можно определить как множество значений X, удовлетворяющих неравенству 20 − δ < X < 20 + δ или |x − 20| < δ .

По условию вероятность нахождения X в искомом интервале равна 0,95, значит P(|x − 20| < δ)= 0,95. С другой стороны P(|x − 20| < δ) = 2Ф(δ/σ), следовательно 2Ф(δ/σ) = 0,95, а значит Ф(δ/σ) = 0,475.

Используя приложение (таблица 2 ), находим δ/σ = 1,96. Отсюда δ = 1,96*σ = 1,96*0,2 = 0,392.
Искомый интервал : (20 – 0,392; 20 + 0,392) или (19,608; 20,392).

Во многих задачах, связанных с нормально распределенными случайными величинами, приходится определять вероятность попадания случайной величины , подчиненной нормальному закону с параметрами , на участок от до . Для вычисления этой вероятности воспользуемся общей формулой

где - функция распределения величины .

Найдем функцию распределения случайной величины , распределенной по нормальному закону с параметрами . Плотность распределения величины равна:

. (6.3.2)

Отсюда находим функцию распределения

. (6.3.3)

Сделаем в интеграле (6.3.3) замену переменной

и приведем его к виду:

(6.3.4)

Интеграл (6.3.4) не выражается через элементарные функции, но его можно вычислить через специальную функцию, выражающую определенный интеграл от выражения или (так называемый интеграл вероятностей), для которого составлены таблицы. Существует много разновидностей таких функций, например:

;

и т.д. Какой из этих функций пользоваться – вопрос вкуса. Мы выберем в качестве такой функции

. (6.3.5)

Нетрудно видеть, что эта функция представляет собой не что иное, как функцию распределения для нормально распределенной случайной величины с параметрами .

Условимся называть функцию нормальной функцией распределения. В приложении (табл. 1) приведены таблицы значений функции .

Выразим функцию распределения (6.3.3) величины с параметрами и через нормальную функцию распределения . Очевидно,

. (6.3.6)

Теперь найдем вероятность попадания случайной величины на участок от до . Согласно формуле (6.3.1)

Таким образом, мы выразили вероятность попадания на участок случайной величины , распределенной по нормальному закону с любыми параметрами, через стандартную функцию распределения , соответствующую простейшему нормальному закону с параметрами 0,1. Заметим, что аргументы функции в формуле (6.3.7) имеют очень простой смысл: есть расстояние от правого конца участка до центра рассеивания, выраженное в средних квадратических отклонениях; - такое же расстояние для левого конца участка, причем это расстояние считается положительным, если конец расположен справа от центра рассеивания, и отрицательным, если слева.

Как и всякая функция распределения, функция обладает свойствами:

3. - неубывающая функция.

Кроме того, из симметричности нормального распределения с параметрами относительно начала координат следует, что

Пользуясь этим свойством, собственно говоря, можно было бы ограничить таблицы функции только положительными значениями аргумента, но, чтобы избежать лишней операции (вычитание из единицы), в таблице 1 приложения приводятся значения как для положительных, так и для отрицательных аргументов.

На практике часто встречается задача вычисления вероятности попадания нормально распределенной случайной величины на участок, симметричный относительно центра рассеивания . Рассмотрим такой участок длины (рис. 6.3.1). Вычислим вероятность попадания на этот участок по формуле (6.3.7):

Учитывая свойство (6.3.8) функции и придавая левой части формулы (6.3.9) более компактный вид, получим формулу для вероятности попадания случайной величины, распределенной по нормальному закону на участок, симметричный относительно центра рассеивания:

. (6.3.10)

Решим следующую задачу. Отложим от центра рассеивания последовательные отрезки длиной (рис. 6.3.2) и вычислим вероятность попадания случайной величины в каждый из них. Так как кривая нормального закона симметрична, достаточно отложить такие отрезки только в одну сторону.

По формуле (6.3.7) находим:

(6.3.11)

Как видно из этих данных, вероятности попадания на каждый из следующих отрезков (пятый, шестой и т.д.) с точностью до 0,001 равны нулю.

Округляя вероятности попадания в отрезки до 0,01 (до 1%), получим три числа, которые легко запомнить:

0,34; 0,14; 0,02.

Сумма этих трех значений равна 0,5. Это значит, что для нормально распределенной случайной величины все рассеивания (с точностью до долей процента) укладывается на участке .

Это позволяет, зная среднее квадратическое отклонение и математическое ожидание случайной величины, ориентировочно указать интервал её практически возможных значений. Такой способ оценки диапазона возможных значений случайной величины известен в математической статистике под названием «правило трех сигма». Из правила трех сигма вытекает также ориентировочный способ определения среднего квадратического отклонения случайной величины: берут максимальное практически возможное отклонение от среднего и делят его на три. Разумеется, этот грубый прием может быть рекомендован, только если нет других, более точных способов определения .

Пример 1. Случайная величина , распределенная по нормальному закону, представляет собой ошибку измерения некоторого расстояния. При измерении допускается систематическая ошибка в сторону завышения на 1,2 (м); среднее квадратическое отклонения ошибки измерения равно 0,8 (м). Найти вероятность того, что отклонение измеренного значения от истинного не превзойдет по абсолютной величине 1,6 (м).

Решение. Ошибка измерения есть случайная величина , подчиненная нормальному закону с параметрами и . Нужно найти вероятность попадания этой величины на участок от до . По формуле (6.3.7) имеем:

Пользуясь таблицами функции (приложение, табл. 1), найдем:

; ,

Пример 2. Найти ту же вероятность, что и в предыдущем примере, но при условии, что систематической ошибки нет.

Решение. По формуле (6.3.10), полагая , найдем:

.

Пример 3. По цели, имеющей вид полосы (автострада), ширина которой равна 20 м, ведется стрельба в направлении, перпендикулярном автостраде. Прицеливание ведется по средней линии автострады. Среднее квадратическое отклонение в направлении стрельбы равно м. Имеется систематическая ошибка в направлении стрельбы: недолет 3 м. Найти вероятность попадания в автостраду при одном выстреле.