Утеплители Изоляция Блоки

Изменение термодинамических функций при адсорбции. Термодинамика адсорбционных процессов. Адсорбция смеси газов на однородной поверхности

Взаимодействие полимеров с жидкостями и газами

Процессы взаимодействия полимеров с низкомолекулярными жидкостями играют важную роль в процессах формирования готовых изделий (например волокна из раствора), модификации свойств (пластификация) материала, а также в условиях эксплуатации этих изделий в различных жидких средах. Взаимодействие выражается в поглощении полимером жидкости и называется сорбцией . Если сорбция протекает в объеме полимерного материала, ее называют абсорбцией . Если поглощение происходит в поверхностных слоях, то процесс называют адсорбцией .

Сорбция

Механизм адсорбции обусловлен наличием сил поверхностного натяжения на границах раздела сред (рис. 5.1) вследствие различия в них сил межмолекулярного взаимодействия. Эти приводит к накоплению избыточной энергии на поверхности вещества, стремящегося втянуть свои поверхностные молекулы (молекулы адсорбента ) и слабее взаимодействующие молекулы (молекулы адсорбтива ) внутрь объема. Величина адсорбции в значительной степени зависит от удельной поверхности адсорбента. Численно адсорбция выражается количеством молей адсорбированного вещества на единицу массы адсорбента - x/m .

Изучение сорбции позволяет получать ценную информацию о структуре полимера, степени упаковки его молекул.

Обычно процессы сорбции описываются с помощью кривых зависимости количества адсорбированного вещества от концентрации (или давления) его в газовой фазе при постоянной температуре (изотермы сорбции, рис. 5.2.). Здесь величина Р /Р s - отношение упругости пара адсорбтива к упругости его насыщенного пара при данной температуре.

В области малых давлений паров выполняется линейный закон Генри:

где а - количество адсорбированного вещества; a m - предельная адсорбция, пропорциональная активной поверхности адсорбента; p - давление сорбата; k - константа адсорбции. На рис. 5.2 завершение мономолекулярной адсорбции определяется выходом изотермы сорбции на полочку в интервале относительных давлений 0,4 ÷ 0,5.

При наличии полимолекулярной адсорбции и конденсации на поверхности пористого адсорбента (Р /Р s > 0,6 на рис. 5.2) используют универсальное уравнение

(5.3)

Термодинамика процесса адсорбции

Поскольку, как правило, межмолекулярное взаимодействие молекул адсорбтива менее интенсивно, чем адсорбента, адсорбция протекает с уменьшением свободной энергии поверхности (ΔF < 0) и выделением тепла (уменьшением энтальпии ΔН < 0). При равновесии процессов адсорбции и десорбции ΔF = 0. Величина, рассчитанная в процессе адсорбции, характеризует количество и активность групп на поверхности адсорбента, способных реагировать с абсорбтивом. При адсорбции уменьшается и энтропия системы (ΔS < 0), поскольку молекулы абсорбтива ограничивают подвижность молекул полимера, уменьшая возможное число конформаций: ΔS = k ln (W 2 / W 1), где - постоянная Больцмана, W 2 и W 1 - термодинамическая вероятность конечного и начального состояния системы.

Адсорбция имеет место на границе раздела фаз. Поэтому термодинамическое описание поверхностных явлений елесообразно рассматривать как частный случай термодинамики гетерогенных систем.

Рис. 3.4. Адсорбция по Гиббсу:1- двухфазная система сравнения, 2- реальная двухфазная система с неоднородной областью

В термодинамике гетерогенных систем используется принцип аддитивности , который заключается в следующем: все экстенсивные свойства гетерогенной системы равны сумме соответствующих экстенсивных свойств, которыми обладали бы фазы до того, как их привели в контакт. Обозначим фазы через α и β (рис.4). Тогда для идеальной системы, такой, что свойства фаз вблизи поверхности раздела совпадают с их объемными свойствами, для внутренней энергии U, объема V, массы (числа молей) n, энтропии S после установления равновесия в гетерогенной системе справедливы соотношения:

U = U α + U β , V = V α + V β , n = n α + n β , S = S α + S β

При этом подразумевается, что температура и давление в обеих фазах одинаковы.

Для реальных гетерогенных систем переходная область на границе двух фаз вносит дополнительный вклад в экстенсивные свойства системы. Если поверхностные явления имеют место, следует учитывать отличие экстенсивных свойств реальной гетерогенной системы от экстенсивных свойств модельной системы, в которой поверхностные явления отсутствуют. Такая система называется системой сравнения. Система сравнения обладает теми же интенсивными параметрами (T, P, C i …) и таким же объемом V, что и реальная система (рис. 4).

С термодинамической точки зрения под величиной адсорбции Г понимают избыточное количество вещества n s , выраженное в молях или граммах, которым обладает реальная гетерогенная система по сравнению с системой сравнения, отнесенное к площади поверхности раздела фаз или к площади поверхности адсорбента А. Принимается, что система сравнения обладает теми же интенсивными параметрами (T, P, C i), и таким же объемом (V = V α + V β), что и реальная система (рис.4).

Г = (n - n α - n β)/A = n s /A 3.11

Избыточные термодинамические функции переходной области реальной системы (обозначим их индексом s) можно записать как



U s = U - U α - U β , n s = n - n α - n β , S s = S - S α - S β и т.д.

Экспериментальные измерения адсорбции всегда дают адсорбцию именно как избыток компонента в реальной системе по сравнению с выбранной системой сравнения. Например, при адсорбции газа на твердом адсорбенте или при адсорбции компонентов на твердой фазе для нахождения величин адсорбции определяют изменение начальных концентраций адсорбата после соприкосновения фаз α и β

n i s = V(C i o - C i),

где C i o – исходные концентрация i –го компонента, C i – концентрация i – го компонента после установления равновесия между соприкасающимися фазами. При этом считается, что объем V не меняется. Однако, концентрация i -го компонента C i , полученная экспериментально, определяется в объеме V’ над поверхностью раздела фаз без учета объема неоднородной области переходного слоя V α у границы раздела, где концентрация составляет C i α . Таким образом, ввиду существования в реальной системе неоднородной области, общий объем системы можно представить как V = V’ + V α . Всё количество i –го компонента C i o распределится между этими двумя объемами:



V C i o = V’ C i + V α C i α ,

и число молей компонента i , адсорбированного на поверхности раздела фаз, будет равно

n i s = (V’C i + V α C i α) – (V’ + V α)C i = V α (C i α – C i) 3.12

Т.е. определяемая экспериментально адсорбция есть избыток i-го компонента в объеме V α по сравнению с количеством этого компонента в таком же объеме вдали от поверхности раздела фаз. Именно такая адсорбция называется адсорбцией по Гиббсу .

V α C i α называется полным содержанием i- го компонента в адсорбционном слое. В области очень малых концентрацийC i в объеме V’ поправкой V α C i уравнения (3.2) можно пренебречь и считать измеренную величину V α C i α полным содержанием i- го компонента в адсорбционном слое, например, при адсорбции газа на твердом адсорбенте при низких давлениях.

Термодинамика адсорбционных процессов.

Наименование параметра Значение
Тема статьи: Термодинамика адсорбционных процессов.
Рубрика (тематическая категория) Образование

Основные определœения и способы классификации адсорбционных процессов.

Адсорбция относится к явлениям, происходящим вследствие самопроизвольного уменьшения поверхностной энергии.

Адсорбция – процесс самопроизвольного обратимого или необратимого перераспределœения компонентов гетерогенной системы между поверхностным слоем и объёмом гомогенной фазы.

В многокомпонентных системах в поверхностный слой предпочтительнее переходит компонент, который сильнее снижает межфазное натяжение. В однокомпонентных системах при формировании поверхностного слоя происходит изменение его структуры (определœенная ориентация атомов и молекул, поляризация), называемое автоадсорбцией .

Более плотную фазу, на которой локализованы адсорбционные взаимодействия называют адсорбентом . Вещество, перераспределяемое между объёмом гомогенной фазы и поверхностным слоем, обозначают термином ʼʼадсорбат ʼʼ.

В ряде случаев процесс адсорбции является обратимым. В этом случае при определœенных условиях часть адсорбированных молекул в результате молекулярно-кинœетических явлений может перейти из поверхностного слоя в объём фазы. Процесс, обратный адсорбции, называют десорбцией .

Способы классификации адсорбционных процессов.

Классификация адсорбционных процессов по агрегатному состоянию взаимодействующих фаз. Учитывая зависимость отагрегатного состояния смежных фаз различают следующие типы адсорбционных процессов:

Адсорбция газов на твердых адсорбентах;

Адсорбция растворенных веществ на границах раздела ʼʼтвердое тело – жидкостьʼʼ и ʼʼжидкость – жидкостьʼʼ;

Адсорбция поверхностно-активных веществ на границе раздела ʼʼжидкость – газʼʼ.

Классификация адсорбционных процессов по механизму взаимодействия адсорбента и адсорбата. Адсорбцию можно рассматривать как взаимодействие молекул адсорбата с активными центрами адсорбента. По механизму их взаимодействия подразделяют следующие виды адсорбции:

1) физическая (молекулярная) адсорбция – взаимодействие между молекулами адсорбата и адсорбента осуществляется за счёт сил Ван-дер-Ваальса, водородных связей (без протекания химических реакций);

2) химическая адсорбция (хемосорбция) – присоединœение молекул адсорбата к активным центрам адсорбента происходит в результате протекания химических реакций различных типов (за исключением реакций ионного обмена);

3) ионообменная адсорбция (ионный обмен) – перераспределœение вещества адсорбата между раствором и твердой фазой (ионитом) по механизму реакций ионного обмена.

Для количественного описания адсорбционных процессов применяют две величины.

1) Абсолютная адсорбция – количество (моль) или масса (кг) адсорбата на единицу площади поверхности или массы адсорбента. Обозначение – А; размерность: моль/м 2 , моль/кг, кг/ м 2 , кг/кᴦ.

2) Гиббсовская (избыточная) адсорбция – избыток вещества адсорбата в поверхностном слое определœенной толщины по сравнению с его количеством в объёме гомогенной фазы, отнесенный к единице площади поверхности или массы адсорбента. Обозначение – Г; размерность: моль/м 2 , моль/кᴦ.

Связь между абсолютной и избыточной адсорбции можно проиллюстрировать с помощью уравнения:

Г = А – с * h (3.1)

где с – равновесная концентрация вещества в объёме фазы, моль/м 3 ;

h - толщина поверхностного слоя, условно принимаемая равной 10 -9 м.

В многокомпонентных гетерогенных системах при перераспределœении того или иного компонента между объёмом гомогенной фазы и поверхностным слоем справедливо уравнение для избыточной внутренней энергии поверхности:

U = T * S + s * s + Sm i * n i (3.2)

Приведя всœе члены уравнения к единице площади межфазной поверхности, получим:

U s = T * S s + s + Sm i * Г i (3.3)

где Г i = n i / s – избыток i -го компонента в поверхностном слое, то есть гиббсовская адсорбция.

Для однокомпонентной системы уравнение (3.3) примет вид:

G s = s + m * Г (3.4)

где G s = U s - T * S s – энергия Гиббса поверхности или работа создания единицы площади поверхности;

m * Г – уплотнение вещества адсорбируемого вещества в поверхностном слое.

Исходя из уравнения (3.4) можно сделать вывод о том, что при адсорбции работа по созданию межфазной поверхности складывается из работы образования поверхности (разрыва когезионных связей в объёме фазы адсорбата) и уплотнения вещества в поверхностном слое.

В состоянии динамического равновесия между адсорбентом и адсорбатом изменение энергии Гиббса гетерогенной системы ΔG = 0, термодинамика процесса адсорбции описывается уравнением, получившим название фундаментальное адсорбционное уравнение Гиббса :

Ds = SГ i * dm i (3.5)

Данное уравнение является универсальным, так как справедливо для всœех типов адсорбционных процессов

Частные случаи адсорбционного уравнения Гиббса.

1) Адсорбция из растворов.

Для химического потенциала i -го компонента системы при протекании адсорбции на границах раздела ʼʼжидкость – твердый адсорбентʼʼ и ʼʼжидкость – газʼʼ справедливы уравнения:

m i = m i 0 + R*T*ln a i (3.6)

dm i = R*T* d ln a i (3.7)

где m i 0 - химический потенциал i -го компонента системы при стандартных условиях;

a i – активность i -го компонента системы при стандартных условиях.

Исходя из этого, адсорбционное уравнение Гиббса примет вид:

Г i = - a i / R*T * (ds / da i) (3.8)

Для растворов неэлектролитов принимаем a i = с i , тогда:

Г i = - с / R*T * (ds / dс) (3.9)

Для растворов электролитов:

Г i = - с ± n / R*T * (ds / dс ± n) (3.10)

где с ± - средняя ионная концентрация раствора;

n - стехиометрический коэффициент.

2) Адсорбция веществ из газовой фазы.

В соответствии с уравнением Менделœеева-Клайперона:

Р = с * R*T (3.11)

В связи с этим, уравнение Гиббса для адсорбции газов на твердых адсорбентах записывают в следующей форме:

Г i = - Р / R*T * (ds / dР) (3.12)

На практике адсорбционное уравнение Гиббса позволяет по данным измерения поверхностного натяжения при различных значениях концентрации жидкости или равновесного давления газа рассчитать величину адсорбции веществ в межфазном слое, для которого определœено поверхностное натяжение.

Термодинамика адсорбционных процессов. - понятие и виды. Классификация и особенности категории "Термодинамика адсорбционных процессов." 2017, 2018.

Адсорбция как самопроизвольное концентрирование молекул на поверхности сопровождается понижением энтропии системы. Так как критерием самопроизвольности процесса являет­ся

∆Н - T· ∆S = ∆G< 0,

то адсорбция возможна только при ∆Н < 0 (экзотермический процесс). Равновесие определяется условием ∆Н = T· ∆S. При повышении температуры равновесие смещается в сто­рону эндотермического процесса, т. е. десорбции.

Адсорбция на поверхности твердого тела

1. Мономолекулярная адсорбция.

По теории Ленгмюра молекулы адсорбтива взаимодействуют с поверхностью адсорбента, образуя в итоге мономолекулярный слой. B этом случае степень заполнения () поверхности адсорбируе­мым веществом при адсорбции из газовой фазы

из жидкости

где К - константа равновесия (константа адсорбции);

р - парциальное давление адсорбируемого газа;

с - концентрация адсорбируемого вещества.

Зависимость β от р (или с) представлена графиком (изотерма адсорбции, Т = const) на рис. 1.3.

Рис. 1.3. Степень заполнения поверхности адсорбируемым веществом

При малых концентрациях и парциальных давлениях адсорбция пропорциональна концентрации или парциальному давлению:

р<< 1, β ≈ К· р илис<< 1, β ≈ К· с, т.е. начальный участок изотермы приблизительно линеен, причем tg α = К(tg α определяют по наклону кривой при р (или с) → 0: или ).

Если - количество молей адсорбированного вещества на 1 г адсорбента; - максимально возможное количество молей адсорбированного вещества на 1 г адсорбента ("емкость мо­нослоя"), то

Подставляя β в уравнение (1.3) (для случая адсорбции из газовой фазы концентрацию с в уравнениях следует заменить на давление р ), получаем:

(1.6)

Так как и К в данной паре адсорбент-адсорбтив являются константами (при T =const), то по зависимости можно найти и К (рис. 1.4).

Рис. 1.4. Графическое решение уравнения адсорбции

получают путем экстраполяции экспериментальной линейной зави­симости к () = 0; и, так как , то , .

Величину можно использовать для определения удельной поверхности адсорбента УД (в м 2 на 1 г адсорбента), если из­вестна площадь ω, занимаемая на поверхности одной молекулой адсорбтива (определяется из размеров молекулы):

УД = · ω · Nа, (1.7)

где Nа - число Авогадро (Nа = 6,02 · 10 23).

В свою очередь, известную величину УД можно использовать для расчета или ωлюбого вещества по его адсорб­ции на данном адсорбенте.



2. Полимолекулярная адсорбция.

Уравнение (1.5) описывает кривую с насыщением, т.е. при

р (или с) → ∞ стремится к предельному значению, равному (рис. 1.5,а).

Рис.1.5. Изотермы адсорбции:

а – адсорбция с насыщением; б – полимолекулярная адсорбция

Однако в некоторых случаях изотермы адсорбции выглядят как показано на рис. 1.5,б, т.е. не достигает предела даже при высоких р (или с).

Зависимости типа показанной на рис. 1.5,б соответствуют по­лимолекулярной адсорбции. Как правило, такие изотермы характерны для веществ с сильными межмолекулярными взаимодействиями (например, для во­ды). Когда центры адсорбции на поверхности адсорбента заняты (мономолекулярный слой насыщен), "посадка" следующих молекул адсорбата происходит за счет межмолекулярных взаимодействий с уже адсорбированными молекулами (рис.1.6). Теплота такой адсорбции близка по абсолютной величине, но противопо­ложна по знаку теплоте испарения соответствующей жидкости (подумайте, почему).

Рис.1.6. Схема адсорбции:

а - мономолекулярная адсорбция; б - полимолекулярная адсорбция

По мере приближения р к давлению насыщенного пара адсор­бируемого вещества оно начинает конденсироваться на поверхнос­ти адсорбента, в результате быстро растет с ростом р .