Утеплители Изоляция Блоки

Биотехнологии – медицине будущего. Биотехнология: о самом главном и перспективном в науке Биотехнологии будущего изменения в социальных отношениях

В начале 2019 года в Санкт-Петербурге состоится значимое для российской науки и медицины событие: 26–30 января пройдет очередная зимняя школа Future Biotech . Спикерами зимней школы в этом году станут ученые из ведущих научных центров мира: Гарварда, Йеля, Университетского колледжа в Лондоне и многих других. Также в школе примут участие именитые российские ученые, деятельные бизнесмены, руководители наукоемких стартапов и увлеченные наукой студенты, аспиранты и молодые исследователи. Ключевая тема в этом году неразрывно связана с медициной и посвящена технологиям редактирования генома и генной терапии.

Философия школы Future Biotech

В-третьих, это безусловно беспрецедентный по своим масштабам научный контент! На лекциях можно будет узнать о самых последних открытиях из первых рук - непосредственно от ученых, ведущих исследования, - и обсудить с ними самые «горячие» подробности.

Таким образом, школа одновременно является тем самым связующим звеном между научными исследованиями и бизнесом, которое пока недостаточно развито в России, а также площадкой для развития профессионального нетворкинга и прокачивания своих знаний.

В этом году ключевой темой школы станут редактирование генома и генная терапия. Сегодня эти технологии - наиболее перспективные и финансируемые направления мировой медицины и фармацевтики. В 2016 году рынок препаратов для генной терапии оценивался в $584 млн. А к 2023 году, по прогнозам аналитиков, глобальная выручка от продажи таких препаратов превысит $4,4 млрд - это более 30% роста ежегодно!

Современные методы генной инженерии в комплексе с другими подходами на наших глазах совершают революцию в борьбе с ранее неизлечимыми генетическими, онкологическими и аутоиммунными заболеваниями. Генная инженерия приходит нам на помощь и в борьбе с устойчивыми к большинству известных антибиотиков бактериями, которые грозят стать главной причиной смертности в мире уже к 2050 году.

Истории и методам генной инженерии посвящены две статьи нашего спецпроекта «12 методов в картинках » . - Ред .

Сегодня на мировом рынке присутствуют лишь единичные препараты на основе генной терапии, десятки находятся на разных стадиях клинических испытаний. Как следует из отчета Allied Market Research , подавляющее большинство препаратов генной терапии производится для больных с онкологическими патологиями. И в ближайшее время - как минимум до 2023 года - эта ниша сохранит свое первенство на рынке. Следом за лекарствами от рака идут средства генной терапии редких заболеваний, сердечно-сосудистых болезней, неврологических расстройств и инфекций .

Ближайшее десятилетие пройдет под эгидой внедрения новых терапий, направленных на лечение агрессивных видов рака, генетических, нейродегенеративных, аутоиммунных патологий, а также внедрения в практику антибиотиков нового поколения. И в этот переломный момент российской науке и индустрии необходимо приложить все усилия, чтобы занять свое место на мировом биофармацевтическом рынке, стать активным участником перспективных исследований и, таким образом, обеспечить россиянам доступ к передовой медицине в будущем. Шагом на пути к достижению этой глобальной цели должна стать зимняя школа Future Biotech 2019. Для этого ее организаторы пригласили в Санкт-Петербург ведущих мировых ученых, работы которых охватывают наиболее перспективные направления биомедицины и биотехнологий. Об этих направлениях мы и поговорим в следующей главе.

Какие прорывы в медицине нас ожидают?

Мир, в котором почти нет неизлечимых болезней, - уже не просто мечта фантастов: это мир, где методы генотерапии и редактирования генома стали главным оружием медицины (рис. 3). Уже сегодня благодаря этим подходам удалось достигнуть значительного прогресса в лечении нескольких ранее неизлечимых патологий, о которых мы и поговорим далее.

Генотерапия: на пути к миру без неизлечимых заболеваний

Чтобы продолжить рассказ, давайте освежим в памяти терминологию. Наследственные заболевания, вызванные «поломками» в ДНК, называются генетическими . Если они спровоцированы мутацией в одном единственном гене - их принято называть моногенными . К таким болезням относятся, например, фенилкетонурия , болезнь Гоше и серповидноклеточная анемия . Существуют патологии, причиной которых является поломка сразу в нескольких генах (они называются полигенными ) или дефект значительной части хромосомы (хромосомные болезни). К полигенным заболеваниям относятся некоторые виды рака, сахарный диабет, шизофрения, эпилепсия, ишемическая болезнь сердца и многое другое. Наибольшего успеха сегодня удалось добиться в лечении моногенных генетических заболеваний, так как исправить один-единственный ген - методически более простая задача, чем бороться с полигенными болезнями или хромосомными аномалиями (однако и здесь всё не безнадёжно!). В борьбе с генетическими болезнями генная терапия и редактирование генома - главные инструменты будущего в руках генного инженера.

Концепция генной терапии элегантна и красива, как всё гениальное. Она заключается в доставке в клетку здорового гена, который заменяет собой его «дефектный» вариант. Большинство прошедших клинические испытания и одобренных видов терапий использует вирусные векторные системы для доставки и встраивания здорового варианта гена в клетки (рис. 4). В ближайшем будущем ученые пророчат развитие невирусных систем доставки генов в клетку.

Существует два основных подхода: постнатальная генотерапия (иногда ее называют соматической) и генотерапия плода (иначе пренатальная, или фетальная генная терапия, о которой мы недавно писали в статье «Фетальная генная терапия: от теории - к практике » ).

В первом случае гены вводят в соматические клетки организма, что позволяет улучшить состояние пациента, однако отредактированный геном не передается потомкам, так как редактирование затрагивает лишь отдельные популяции клеток, не изменяя при этом геномы клеток, продуцирующих гаметы. Такой способ оправдан для борьбы, например, с онкологическими заболеваниями. Во втором случае ДНК вводят в эмбрион на ранней стадии развития, что позволяет отредактировать все, большинство или значительную часть клеток плода. При данном подходе изменения наследуются, так как половые клетки тоже будут нести эти изменения. Этот подход перспективен для борьбы с наиболее тяжелыми наследственными патологиями.

Американское Управление по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA) уже одобрило 16 препаратов на основе генной и клеточной терапии. Среди них есть средства для лечения агрессивных видов рака крови, предстательной железы и редкой наследуемой формы ретинальной слепоты.

Пренатальная терапия имеет ряд преимуществ перед постнатальной, самым большим из которых является помощь на ранней стадии развития болезни, когда патологический процесс еще не успел зайти далеко. Благодаря современным методам пренатальной диагностики исправлять дефектные гены можно на ранних сроках беременности, уже в 14–16 недель. Коррекция мутантных генов у развивающегося плода позволяет быстро увеличить популяцию стволовых клеток со «здоровым» вариантом гена, а значит, заболевание можно вылечить полностью или, по крайней мере, значительно облегчить его течение. Несмотря на радужные перспективы, на данный момент перед учеными стоит ряд нерешенных задач. Фетальная генная терапия увеличивает риск выкидыша и преждевременных родов из-за развития иммунных реакций у матери и ребенка. Кроме того, она может привести к неожиданным, а иногда и катастрофическим последствиям уже на постнатальной стадии развития. Вносимый ген может неспецифически встроиться в любое место генома и, таким образом, нарушить работу других генов, спровоцировав генетическое или онкологическое заболевание. Другой побочный эффект фетальной генотерапии - мозаицизм (явление, при котором часть клеток имеет «исправленный» ген, а остальные несут его «сломанную» версию), который может привести к весьма непредсказуемым последствиям в будущем.

С точки зрения потенциальных рисков очевидно, что фетальная генная терапия должна использоваться только для лечения тяжелых генетических заболеваний, других вариантов коррекции которых не существует. К таким патологиям относятся некоторые редкие генетические заболевания, например миодистрофия Дюшенна , спинальная мышечная атрофия , фатальная семейная бессонница , фенилкетонурия и фибродисплазия . Для их лечения сегодня активно разрабатывают варианты генных терапий, некоторые из которых находятся на финальных стадиях клинических испытаний. Среди редчайших генетических патологий, безусловно, есть и болезнь Гоше - нейродегенеративное заболевание, тяжелая форма которого на данный момент не поддается лечению и всегда летальна. Болезнь Гоше - самая частая форма среди редких наследственных ферментопатий , то есть болезней, связанных с дефектами ферментов. На ее примере была впервые продемонстрирована высокая эффективность фетальной генотерапии в экспериментах на мышах, а теперь ученые готовятся к испытаниям и на людях . Это значит, что будущее, где дети с вышеупомянутыми неизлечимыми генетическими заболеваниями смогут выздоравливать, наступит довольно скоро.

Генотерапия может быть чрезвычайно эффективна и в постнатальный период , в том числе для лечении взрослых пациентов. Спинальная мышечная атрофия (СМА) стала еще одним орфанным (то есть редким генетическим) заболеванием, долгожданную надежду на лечение которого подарила генная терапия . 23 декабря 2016 г. FDA зарегистрировало первое лекарство для СМАйликов (так ласково называют пациентов с этой болезнью) - нусинерсен (коммерческое название Spinraza ). По результатам клинических испытаний у 51% пациентов улучшились моторные навыки, а также снизились риск смерти и постоянной вентиляции легких по сравнению с контрольной группой.

Крайне эффективна постнатальная генная терапия и при борьбе с онкологическими заболеваниями, которые являются одной из лидирующих причин смертности в странах с высоким уровнем жизни по данным ВОЗ (Всемирной организации здравоохранения). На данный момент одобрено два препарата: Yescarta и Kymriah , направленных на лечение высокоагрессивных видов В-клеточной лимфомы с использованием технологии CAR-T. Суть этой технологии заключается в искусственной «настройке» иммунитета пациента против опухолевых клеток. У больного берут T-лимфоциты и в лаборатории при помощи безвредного вирусного вектора вводят в их геном ген химерного антигенного рецептора (CAR) , который позволяет модифицированным Т-клеткам узнавать специфический антиген на поверхности злокачественных B-клеток. Затем модифицированные Т-лимфоциты вновь вводятся в кровь пациента. Там они начинают атаковать собственные B-лимфоциты, уничтожая злокачественных «перебежчиков». Однако при данной терапии высок риск развития аутоиммунных реакций. Это связано с тем, что антигены, по которым наши воины (модифицированные Т-лимфоциты) узнают «перебежчиков», могут иногда встречаться и на поверхности здоровых клеток. Исследователи активно работают над решением этой проблемы .

Терапии на основе CAR-T - пожалуй, самый успешный на сегодняшний день вариант лечения на стыке клеточной и генной терапий! Эта технология позволяет добиться полной ремиссии примерно в половине случаев лечения или продлить жизнь пациентов в большинстве остальных случаев.

Генная терапия на Future Biotech

Технологии, в основе которых лежат редактирование геномов собственных клеток пациента (CAR-T) и РНК-интерференция, помимо биологических и биоэтических ограничений имеют еще одну серьезную проблему: экстремальная дороговизна! Например, полный курс лечения препаратом Yescarta стоит $350 000, а годовой курс терапии, включающей в себя еженедельные инъекции Patisiran , обойдется пациенту в $450 000. Все эти проблемы ученым и фармацевтическим компаниям предстоит решить в самом ближайшем будущем.

Технология CRISPR-Cas9. Самый точный инструмент редактирования генома

В последнее время в прессе постоянно пишут о разнообразных успехах этого подхода, и не зря: ведь технология редактирования генома с помощью системы CRISPR-Cas9 - это поистине эпохальная разработка (рис. 5)!

На «Биомолекуле» так много статей о великой и могучей технологии CRISPR-Cas9, что мы посвятили ей целый раздел ! - Ред.

Проблема столь массового распространения резистентности среди бактерий имеет множество причин. Сам процесс приобретения устойчивости естественен и неизбежен, однако злоупотребление антибиотиками, их неправильная утилизация и массовое попадание в окружающую среду ускорили этот процесс настолько, что некоторые инфекции не поддаются лечению даже комплексами из новых препаратов. Поэтому поиск новых антибиотиков является приоритетной задачей для современной науки .

Самая распространенная мишень всех известных антибиотиков - аппарат синтеза белка бактерий. Аппарат трансляции прокариот отличается от нашего, что позволяет использовать специфические ингибиторы синтеза белка у бактерий без вреда для собственных клеток нашего организма. Из-за массового распространения генов устойчивости у бактерий ученые активно изучают их белоксинтезирующий аппарат и ищут новые мишени и ингибиторы трансляции. На

Почему биотехнологии?
Человечество входит в третье тысячелетие с громадными знаниями в области наук о жизни и колоссальным потенциалом их практического использования.
Достижения в области физико-химической биологии и биотехнологии заложили основы новой медицины. Стремительно развиваются новые методы диагностики труднодиагностируемых заболеваний и устойчивых к воздействию антибиотиков микроорганизмов. Фармакология получила множество ранее недоступных возможностей благодаря открытию новых генов и их белковых продуктов, что ведет к возникновению нового поколения лекарств с высокой избирательностью действия и малой токсичностью.
В последнее десятилетие отрасль привлекает все более пристальное внимание инвесторов по всему миру, а согласно прогнозам экспертов, биотехнологии способствующие улучшению человеческой жизни или самого организма, способны стать одним из наиболее динамично развивающихся и прибыльных бизнесов XXI века.
Основные тенденции на мировом рынке биотехнологий:
Адресная доставка лекарственных средств. Мировой рынок наномедицины,
достижения которой позволяют достичь существенных успехов в разработке систем
адресной доставки лекарственных средств, растет на 12,3% в год. Его объем составит 178 млрд долларов к 2019 году. Наиболее перспективными областями применения
наномедицины являются лечение онкологических и сердечнососудистых заболеваний.
Одной из тенденций современной медицины является активное внедрение биологических полимеров, способных длительно выполнять необходимые функции или разлагаться на простые метаболиты и выводиться организмом за установленный срок без вреда для человека, что зачастую сопровождается образованием новых тканей. Глобальное старение населения и растущее число хирургических вмешательств для замены тканей и органов создают основу для устойчивого долгосрочного роста спроса на биосовместимые и биодеградируемые медицинские материалы. По оценке аналитической компании GIA, объем этого рынка достигнет 106,7 млрд долларов к 2020 году.
Текущее состояние инновационной инфраструктуры в секторе
биотехнологий в России:
По итогам 2011–2013 годов в России в целом сформировался «инновационный лифт» - система созданных государством институтов развития, поддерживающих инновационные проекты на различных стадиях: от предпосевной и посевной до момента расширения и реструктуризации. Основными структурными элементами «инновационного лифта» выступают ОАО «РВК», ОАО «Роснано», Фонд «Сколково», Внешэкономбанк (ВЭБ), Российский банк поддержки малого и среднего предпринимательства (МСП Банк), Фонд содействия развитию малых форм предприятий
в научно-технической сфере («Фонд Бортника»), Российский фонд технологического развития (РФТР). Дополняют систему активно создаваемые региональные венчурные фонды, общественные организации («ОПОРА РОССИИ»), Российская ассоциация венчурного инвестирования, а также специализированная торговая площадка Московской биржи для высокотехнологичных компаний
«Рынок инноваций и инвестиций». В области биотехнологий особая роль отводится Кластеру биомедицинских технологий Инновационного центра «Сколково». Так, в рамках «Сколково» компании не только могут получить финансовые ресурсы в форме грантов, но также имеют доступ к упрощенным таможенным процедурам, менторской поддержке профессионалов, дискуссионным площадкам.
И в заключении хотелось бы подвести итог:
Если мы хотим оставаться цивилизованной страной, то мы обязаны развивать собственную биотехнологическую промышленность. Это выгодно, перспективно и приоритетно, что подтверждает и наблюдаемая тенденция роста интереса со стороны российского частного капитала к созданию фармацевтических и биотехнологических производств.
Институты развития уделяют этому сектору все больше внимания в своих инвестиционных стратегиях. Важная роль в развитии отрасли отводится Технологическим платформам («Медицина будущего», «Биотех 2030», «Биоэнергетика»), и площадкам для развития биотехнологий (www.ivao.com) которые призваны стать связующим звеном между бизнесом и наукой. Провозглашенная политика импортозамещения постепенно начинает приносить свои плоды. Так, многие крупнейшие биофармацевтические компании локализовали свое производство в кластерах Калужской, Ярославской области, в Санкт-Петербурге. Отечественные компании при поддержке Министерства промышленности и торговли создают аналоги зарубежных биопрепаратов. С ожидаемым истечением сроков патентной защиты на многие лекарства, в перспективе в России может появиться конкурентоспособный сектор биоаналогов (биосимиляров).

Медицинские биотехнологии, использующие живые системы и их продукты, принципиально меняют подход к разработке лекарственных средств и увеличивают шансы победить или вообще предотвратить трудноизлечимые заболевания.

Клиническая картина мира

Инвестиции в медицинcкие разработки постоянно растут. Мировые расходы на R&D в области Life Science, по данным Industrial Research Institute (IRI), за последние десять лет увеличились втрое и составили $169,3 млрд в 2016 году. Причем 85% ресурсов приходится на биофармацевтический сектор. По затратам на R&D медицина является лидером наряду с ICT (Information and Communication Technology — $204,5 млрд в 2016 году).


Однако доля расходов на исследования в общих тратах частного и государственного секторов на здравоохранение даже в развитых странах сравнительно невелика. В США — лидере среди стран по вложениям в R&D — их доля в 2016 году составляла 4,9% от общих расходов на здравоохранение, оцениваемых в $3,2 трлн. В России — 1,8% от общих расходов в $9,7 млрд, или 544 млрд руб.

Потребности медицины определяет клиническая картина мира. В XXI веке она складывается из сердечно-сосудистых и онкологических заболеваний, старческих недугов, наследственных и даже орфанных (редких) болезней разной этиологии. Кроме того, наука по-прежнему ищет способы борьбы с масштабными вирусными инфекциями, не поддающимися классической вакцинации (гриппом, ВИЧ-инфекцией), и новыми экзотическими — ТОРС, Эбола, Зика.

В первую очередь фармкомпании и государство вкладывают средства туда, где гарантирован успех в лечении и возврат вложенных средств. «Выбор актуальных направлений в медицине базируется на потенциале конечного продукта с точки зрения его эффективности, на запросе потребителя, которым может выступать государство как представитель пациентов, а также интересе частных компаний и инвесторов в реализации прорывных проектов с высокой окупаемостью», — отмечает генеральный директор компании Future Biotech Денис Курек.

В частности, основные силы российских разработчиков по заказу государства брошены на создание эффективного и доступного лекарства от рака — второй после заболеваний сердечно-сосудистой системы причины смертности в России. Ежегодный объем госзакупок на лечение онкозаболеваний превышает 60 млрд руб. — такие данные приводят в DSM Group. «Аудитория у болезни широкая, стоимость препаратов высока. Отдача от инвестиций в разработку лекарства от онкозаболеваний происходит довольно быстро», — говорит эксперт фармацевтического рынка, генеральный директор DSM Group Сергей Шуляк.

Достижения последних лет в области биологии, химии, иммунологии, клеточной биологии и других науках позволяют сделать рывок в области прикладного их применения в практической медицине. Рождаясь на стыке этих наук, медицинские биотехнологии в ближайшие 20 лет могут удивить человечество не меньше, чем, например, информационные технологии.

Иммунотерапия

Одной из самых перспективных технологий создания современных лекарств от онкологических и аутоиммунных заболеваний является биосинтез моноклональных антител (МКА). Близкие по своей структуре к человеческим иммуноглобулинам — белкам крови, являющимся одним из основных механизмов защиты организма от инфекционных заболеваний, МКА низкотоксичны и более безопасны по сравнению с традиционной химиотерапией.

Первый импортный иммунотерапевтический препарат ипилимумаб (TM Yervoy) нового поколения, который является моноклональным антителом, способным связывать и подавлять защиту клеток метастатической меланомы (рака кожи), был выведен на рынок в 2014 году компанией Bristol-Myers Squibb. Компания Biocad планирует в 2018-2019 годах выпуск в России препарата, действующего по тому же принципу, но более широкого спектра действия. Об этом ранее заявляла министр здравоохранения РФ Вероника Скворцова.

Сегодня стоимость лекарства в России — около 100 тыс. руб. за упаковку. Курс лечения с поддерживающим ипилимумаб препаратом того же класса и той же компании — ниволумабом (TM Opdivo) обойдется в два раза дороже. Импортные препараты пока монополисты нового рынка. Российские разработки призваны снизить стоимость жизненно важных лекарств. Программа «Фарма-2020» субсидирует разработки в этой области (см. диаграмму). В частности, первый российский препарат на основе МКА — ритуксимаб — Biocad выпустила в 2014 году в результате государственно-частного партнерства на средства федерального бюджета.

Стимулирование отрасли (с 2015 года препараты российского производства имеют существенные преференции в госзакупках ЛС) позволило российским технологиям серьезно продвинуться в создании лекарств нового поколения и потеснить препараты импортного производства. По данным DSM Group, в 2015 году в госзакупках по программе «Семь нозологий» доля препаратов российского производства выросла с 3 до почти 20%. В рамках этой программы наиболее дорогие лекарства для семи редких заболеваний, включая злокачественные новообразования кроветворной и лимфоидной тканей, централизованно закупаются на средства федерального бюджета. За последние два года значительно выросли объемы закупок, в том числе отечественных противоопухолевых препаратов, по государственной программе льготного лекарственного обеспечения (ОНЛС).

Вакцины против аутоиммунных заболеваний

Антицитокиновая терапия — последнее слово в лечении аутоиммунных заболеваний, при которых некоторые иммунные клетки, призванные защищать организм, начинают его убивать. Однако в ее современном виде у этой технологии есть очевидные недостатки — организм не всех больных на нее отвечает, нет надежных биомаркеров, которые позволили бы предсказать успех этой очень дорогой терапии.

Дальнейшее развитие метода, по словам научного руководителя Федерального исследовательского центра фундаментальной основы биотехнологии РАН, завкафедрой биотехнологии биологического факультета МГУ им. М.В. Ломоносова академика Константина Скрябина, связывают с созданием препаратов на основе биспецифических, как их называют, антител с заданными свойствами, или бинарных вакцин. Это биоконструкции на основе антител, образно говоря, с двумя руками. Одной антитело держится за поверхность «сошедшей с ума» иммунной клетки, а второй, как хоккейный вратарь в ловушку, ловит выделяющиеся из клетки вредные цитокины и нейтрализует их.

На рынке они появятся, вероятно, не раньше середины 2020-х годов. Создание таких лекарств — путь долгий и дорогой.

Предметом исследования являются не только сами антитела, но и мишени — деструктивная клетка или вещество, которое активирует ее деятельность и которое нужно нейтрализовать. «Определение мишени — важная часть инновации в создании лекарства», — говорит Константин Скрябин.

«Нужно понимать, о какой «сошедшей с ума» патологической клетке идет речь и с помощью какой мишени эту клетку можно отличить от здоровых клеток. Главное — это наличие адекватной мишени, открытой фундаментальными биологами, исследователями», — согласен медицинский директор Национальной иммунобиологической компании (входит в госкорпорацию «Ростех») Александр Власов.

Выращивание тканей

Существующие технологии уже позволяют выращивать ткани и даже целые органы за счет ресурсов самого организма (аутологичных клеток, широко известные стволовые клетки — их разновидность). Но главная проблема в том, что для клеточного строительства нужен матрикс — каркас, который в идеале по окончании строительства должен замениться восстановленной тканью и бесследно исчезнуть.

Разработка МГУ предлагает в качестве такого каркаса для наращивания ткани фиброин (белок) шелка тутового шелкопряда. До сих пор на рынке матриксов конкурировали синтетические биоразлагаемые полимеры, но использование природных материалов выглядит более перспективным. Первые результаты биопротезирования тонкого кишечника у крыс обнадеживают, что эта технология будет востребованной.

«Чтобы выращивать новые ткани и органы, например кожу или тонкий кишечник, клетки должны образовывать нужную структуру конкретного органа. Белок шелка тутового шелкопряда позволяет структурировать ткань», — отмечает Константин Скрябин. По его мнению, технология имеет большое будущее.

Генная инженерия

Наука не только научилась читать геном человека со всей наследственной информацией, но и нашла способ его редактировать, что открывает новые возможности для лечения онкологии, вируса иммунодефицита человека и моногенных заболеваний. Лидирует по использованию редактирования генома терапия ВИЧ-инфекции с шестью зарегистрированными на сегодняшний день клиническими исследованиями. «Перспективы применения редактирования генома безграничны. В области трансплантации органов и тканей, например, особое место занимают разработки по преодолению межвидовой гисто-

совместимости. «Отредактированные» животные, например свиньи, с учетом физиологии и архитектоники органов и тканей могут быть универсальными донорами для человека», — отмечают авторы доклада «Редактирование генома и возможности генной терапии в онкологии» фонда «Сколково».

Мировые медтехнологии, по словам академика Скрябина, перешли к превентивным мерам в отношении трудноизлечимых заболеваний. В начале 2000-х годов чтение генома обошлось в $3 млрд, сейчас технология позволяет это сделать за $1 тыс. Одна из американских компаний, специализирующаяся на этой услуге, анонсировала возможность получать всю генетическую информацию человека в течение двух часов по цене, не превышающей $100.

Результатом поиска на протяжении последних 20 лет подхода к проведению неинвазивной диагностики генетических заболеваний плода стала возможность на раннем сроке — уже после десятой недели беременности — определять свободные фрагменты ДНК из клеток плода в крови матери. Достаточно забора крови матери. В Европе сделано уже 400 тыс. анализов с использованием фетального материала, циркулирующего в материнском кровотоке, в Китае — 500 тыс. В России проведены пока только первые пять тысяч анализов. В стране нет зарегистрированного необходимого оборудования, иностранные аналоги очень дороги, поэтому услуга недоступна в повседневной медицинской практике. Кроме того, по словам Константина Скрябина, государственная система обязательного медицинского страхования (ОМС) оплачивает стандартные методики пренатальной диагностики, так называемого прокола — забора необходимых материалов околоплодной жидкости с проникновением инструментов в полость матки.

По словам исполнительного директора кластера биомедицинских технологий фонда «Сколково» Кирилла Каема, будущее за Big Data в медицине: «Собрав данные по большим популяциям населения, можно полностью изменить парадигму здоровья. Эти данные будут давать вероятностный прогноз о рисках и позволят заниматься профилактикой не только в традиционном виде, а делать конкретные вмешательства, которые позволят остановить развитие заболеваний».

Александр Власов ждет перспективных решений в области продления жизни и комфортного старения от западных специалистов. Фундаментальных исследований вопросов старения, по его словам, в нашей стране пока мало.

Глубокоуважаемые коллеги!

Ниже выложена информация о прошедших мероприятиях:

1. Круглый стол «Пилотный проект по развитию технологического

предпринимательства в сфере биотехнологий»

2. Научно-деловая игра «Стартап-Биотех»

Глубокоуважаемые участники конференции!

На сайт выложены фотографии:

27.07.2017

Глубокоуважаемые коллеги!

Благодарим Вас за участие в Конференции!

Выражаем благодарность , слушателям!

Отдельное спасибо за организационную, финансовую и техническую поддержку!

Чуть позже будут выложены материалы конференции и краткий фотоотчет.

  • СБОРНИК ТЕЗИСОВ КОНФЕРЕНЦИИ ВЫ МОЖЕТЕ СКАЧАТЬ .
  • ПРОГРАММУ КОНФЕРЕНЦИИ ВЫ МОЖЕТЕ СКАЧАТЬ .

ПРЕСС и МЕДИА:

  • Репортаж с открытия конференции на интернет-странице издания Наука в Сибири (СО РАН) (Фотографии докладчиков)

Будем рады видеть Вас на следующем мероприятии "Биотехнология - медицине будущего"!

Оргкомитет

NB!

25.07.2017 г.

Уважаемые Участники секции "РАЗВИТИЕ ТЕХНОЛОГИЧЕСКОГО ПРЕДПРИНИМАТЕЛЬСТВА В СФЕРЕ БИОМЕДИЦИНСКИХ ТЕХНОЛОГИЙ"!

План мероприятий на площадке НГУ:

1. Молодежная секция "Биомедицинские технологии: стартапинг" пройдет с 9:00-10:30 в "старом Главном корпусе" НГУ (Пирогова, 2) на 3 этаже в ауд. 317-а (Зал заседаний Ученого совета)
2. Кофе-брейк 10:30-11:00
3. Круглый стол «Пилотный проект по развитию технологического предпринимательства в сфере биотехнологий» пройдет с 11:00-13:00 "старом Главном корпусе" НГУ (Пирогова, 2) на 3 этаже в ауд. 317-а (Зал заседаний Ученого совета)
4. Перерыв на обед 13:00-14:00
5. Научно-деловая игра "Стартап-Биотех" пройдет с 14:00-19:00 в НОВОМ корпусе НГУ (Пирогова, 1), вход 1 - слева, к. 4105.

С уважением,

Оргкомитет

Уважаемые Участники и Гости конференции!

Вы можете ознакомиться с Конференции и 24-26 июля на базе Академпарка.

С программой секции "РАЗВИТИЕ ТЕХНОЛОГИЧЕСКОГО ПРЕДПРИНИМАТЕЛЬСТВА В СФЕРЕ БИОМЕДИЦИНСКИХ ТЕХНОЛОГИЙ" вы можете ознакомится Приглашаем поучаствовать в Научно-деловой игре "Стартап-Биотех" ().

Доступна для скачивания мероприятия.

Глубокоуважаемые коллеги!

С 24 по 26 июля 2017 г . в Новосибирском Академгородке будет проходить всероссийская конференция с международным участием "" (первоначально Молекулярная медицина - завтрашний день ”).

В рамках конференции «Биотехнология - медицине будущего » планируется обсудить фундаментальные научные и научно-практические вопросы, связанные с конструированием интеллектуальных материалов для медицины - биологических молекул, молекулярных устройств, модифицированных микроорганизмов и клеток, а также создание новых подходов персонализированной и регенеративной медицины. В рамках конференции будет работать секция для молодых ученых "Биомедицинские технологии: стартапинг ".

Биотехнологии, несмотря на весь пафос и инновационность названия – одна из наиболее древних отраслей, появившаяся тогда, когда само понятие науки еще не было устоявшимся. При этом, безо всяких сомнений, сегодня биотехнологии в широком смысле данного понятия, являются одним из наиболее перспективных и многообещающих направлений изучения возможностей использования живых организмов.

Фактически же человечество впервые столкнулось в биотехнологиями (в самом простом и широком понимании) в тот же момент, когда они столкнулись с “биотой” – то есть биологически активным населением самых разнообразных сущностей на нашей планете: при выпечке хлеба, пивоварении (в обоих случаях это дрожжевые культуры) и при самых первых, робких, шагах в селекции тех растений, которые помогали прокормиться.

Конечно, осознанное и планомерное развитие биотехнологий началось позже, фактически – не так давно по меркам науки, в конце XVII века, когда было открыто существование микроорганизмов. Огромную роль в этом открытии сыграл петербургский академик К. С. Кирхгов, который открыл явление биологического катализа и пытался биокаталитическим путем получить сахар из доступного отечественного сырья (в первую очередь – свеклы). А термину “биотехнологии” мы обязаны венгерскому инженеру Карлу Эреки, которые впервые использовал его в своих работах в 1917 году. Большая заслуга в первоначальном становлении биотехнологий, как направлению науки биологии, также отдается и одному из самых известнейших микробиологов – Луи Пастеру, благодаря открытиям которого никто более не сомневался в том, что биотехнологии являются самостоятельным научным направлением.

Первый же патент в области биотехнологий был выдан в 1891 году в США – японский биохимик Дз. Такамине открыл методику использования ферментных препаратов в промышленных целях: применять диастазу для осахаривания растительных отходов.

В XX веке развитие биотехнологий обрело новый вид и множество направлений – в частности, они начали оказывать влияние на другие отрасли и области хозяйственно-экономической деятельности человека. Стоит сказать лишь, что активное развитие бродильной и микробиологической промышленности дало нам сотни, если не тысячи, методик и препаратов, существенно улучшающих жизнь каждого человека: стало возможным производство антибиотиков, пищевых концентратов, а также осуществление контроля за ферментацией продуктов растительного и животного происхождения, что безумно важно для обеспечения продовольствием.

Выделение и очищение до приемлемого уровня первого антибиотика – пенициллина, стало возможным лишь в 1940 году, одновременно выведя всю отрасль биотехнологий на совершенно новый уровень и ставя новые задачи, такие как: поиск и отработка технологий производства лекарственных веществ, продуцируемых микроорганизмами, работа над удешевлением и повышением уровня безопасности при приеме лекарственных препаратов пациентом и так далее.

В сегодняшнем мире биотехнологии уже фактически неразрывно связаны с инжинерией (в том числе и генной), энергетикой, медициной, сельским хозяйством, экологией и многими другими отраслями и научными направлениями мысли.

За последние 100 лет, благодаря безудержному прогрессу во всех направлениях, спектр задач и методики их решения в биотехнологиях значительно поменялись. В основе т.н. “новой” биотехнологии лежат уже очень продвинутые и высокотехнологичные методы генной и клеточной инжинерии, с помощью которых проводится множество сложных операций, в том числе – воссоздание из отдельных фрагментов клеток их жизнеспособных копий.

На стыке биотехнологии и других научных областей могут рождаться самые интересные и неожиданные решений, позволяющие глубже узнавать и использовать потенциал самых разнообразных живых организмов. Как следствие, мы больше узнаем о тех процессах, с помощью которых мы получаем:

– Материалы и композиты
– Топливо и способы синтеза
– Лекарственные препараты и вакцины
– Методы диагностики и профилактики заболеваний, в том числе генетически обусловленных
– Не говоря о процессах старения, являющихся в некотором смысле “философским камнем” мира биотехнологий, есть множество абсолютно приземленных и, простите, “простых” перспектив применения в реальной жизни с её практикой.

В первую очередь здесь, конечно, неоправданно нелюбимые необразованным читателем/зрителем/слушателем “генно-модифицированные организмы”, пресловутый “ГМО”. На самом деле человечество, с того самого мгновения, как оно сменило кочевничество на оседлый образ жизни и начало обрабатывать землю и разводить скот, занималось созданием “генно-модифицированных” культур в сельском хозяйстве. Без этого у нас бы не было урожая в принципе, так как условия биоценоза (то есть устойчивого развития организмов) просто не позволили бы вырастить ни корову, ни пшеницу. И именно поэтому биотехнологии в области растительных культур могут решить множество проблем, от голода и обеспечения продуктами, до улучшения качества жизни всех людей вследствие гармонизации уровней питательности самых разнообразных продуктов растительного происхождения.


Не нужно думать, что биотехнологии сегодня достигли пика собственного развития – такое мнение было бы в корне неверно. Происходит дальнейшая фрагментация “биотехнологий” на емкие направления, занимающиеся собственными прикладными задачами. К примеру, в России была принята “Комплексная программа развития биотехнологий”, в рамках которой планируется создание глобально конкурентноспособного секта биоэкономики и предприятий, работающих в этой области. При этом ожидается, что к 2020 году объем этого сектора составил не менее 1% ВВП, а к 2030 – не менее 3% ВВП Российской Федерации. Это не просто амбициозные планы, это суровая реальность, которой необходимо соответствовать.

На какие отрасли могут оказать влияние биотехнологии в самом ближайшем будущем? Почти на все, ведь мы видим дальнейшую интеграцию различных научных и прикладных областей друг с другом.

Возьмем для примера космическую отрасль, которая уже сегодня активно работает с микроорганизмами, применяя настоящие биотехнологические методы. К примеру, благодаря отправке различных видов микроорганизмов на МКС, мы знаем, что огромное число бактерий устойчиво к жесткому космическому излучению самых разнообразных спектров и волн. Более того, мы обнаружили на Земле микроорганизмы, находящиеся в состоянии анабиоза (грубо говоря: “спячки”), которые вышли из него только будучи облучены космическими лучами. Они микроорганизмы просто не могли образоваться на нашей планете, они были занесены к нам в процессе формирования Солнечной системы с других космических объектов нашей галактики.

Как еще биотехнологии могут повлиять на освоение людьми ближайшего к нам космоса? Представьте себе даже простую исследовательскую экспедицию к другим планетам в пределах нашей локальной группы – например, к Марсу. Помимо психологической устойчивости экипажа такой экспедиции (а полет будет длится минимально год при текущем уровне развития ракетных и других видов двигателей, пригодных для межпланетного сообщения), ей понадобится приличный запас продовольствия и топлива. Даже сейчас на МКС невозможно доставить годовой запас продовольствия для группы из 3-5 космонавтов – это слишком тяжело и потребуется несколько ракет-носителей. Что уж говорить о долгосрочной космической миссии, в рамках которой возможности пополнения запасов “по-дороге” просто не будет.

Поэтому и потребуется наладить бесперебойное выращивание пищи на месте – только такая схема обеспечит безопасность и миссии полета, и колонизации. С этим согласны и ученые “Национальной лаборатории им. Беркли” в США, которые и предлагают, как-раз, прибегнуть к использованию последних достижений в области синтетической биологии. Что это значит?

Исследователи подсчитали, что для экспедиции на Марс продолжительностью примерно около двух с половиной лет, использование современных методов, применяемых в биотехнологиях, позволит в два с половиной раза сократить потребность в горючем топливе и на ⅓ – в продовольствии. В докладе исследователи отметили, что последние разработки на стыке биологии и нанотехнологий также помогут в строительстве жилых модулей. Непосредственно на другой планете, будь то Марс или какая-то другая. Все необходимые для этого материалы можно синтезировать прямо на месте, а строительные блоки получат по технологии многослойной 3D-печати.

Естественно, есть у биотехнологий и многочисленные “противовесы” и сдерживающие факторы, первыми из которых идут социально-этические и религиозные предпосылки. Человек может, фактически, использовать возможности живых организмов для решения самых разнообразных задач в бесконечном цикле, но, на практике, лишь до определенного момента – некоторой черты, переходить которую “нельзя”. В первую очередь это касается полного клонирования живых организмов (вспомним овечку “Долли” и все то, что о ней говорилось). Сегодня это запрещено в большинстве развитых стран, а людям, которые вопреки всему готовы этим заниматься, приходится искать и финансирование, и условия для работы там, где они не нарушают никаких законов – например, в нейтральных водах мирового океана (которые не контролируются национальными законами ни одной страны).

При этом, конечно, никто сегодня не исключает того факта, что в будущем полное клонирование человека станет возможным. Как это простимулирует всю отрасль биотехнологий и какие новые наукоемкие направления работы в ней появятся вслед за этим событием – покажет будущее.

Это что касается общего развития биотехнологий, как большой научной и промышленной отрасли на стыке технологий и биологии. А на какие профессии и сферы занятости влияют широкие “биотехнологии”, как понятия? На самом деле, их множество. Попробуем перечислить лишь наиболее интересные и перспективные.


Это специалист по замещению существующих и формально устаревающих решений в различных отраслях новыми методиками из области биотехнологий (например биотопливо вместо дизельного топлива, или органические строительные материалы вместо цемента, бетона и стали).


Это специалист по планированию, проектированию и созданию технологий замкнутого цикла с участием генетически модифицированных организмов и микроорганизмов (биоректоры, системы производства еды в городских условиях).


Это специалист, занимающийся проектированием городов нового типа, с использованием последних достижений в области биотехнологий, в том числе чистых биологических энергоресурсов и систем контроля загрязнения окружающей среды.


Это специалист по созданию новых лекарственных биопрепаратов с заданными свойствами, которые смогуз аменить искуственно синтезированные лекарства.



Это специалист по обустройству и обслуживанию агропромышленных хозяйств на крышах и стенах небоскребов и жилых домов, то есть в условиях городской застройки. Здесь могут быть как продукты питания, так и разведение домашнего скота.


Это специалист, применяющий свойства и организацию живой природы и живых организмов (в том числе и человека) для создания автоматизированных систем и усовершенствования вычислительной техники. Например, распределенные вычислительные сети на базе микроорганизмов уже сегодня решают специфические задачи, не подвластные компьютерному моделированию.