Утеплители Изоляция Блоки

Физические свойства материалов - документ. Физические свойства

Удельные и структурные характеристики – это истинная, средняя и насыпная плотность материала, а также различные виды пористости.

Истинная плотность r (г/см 3) – масса т единицы объема V а материала в абсолютно плотном состоянии без пор и пустот:

Средняя плотность r о (кг/м 3) – масса т единицы объема V о материала в естественном состоянии вместе с порами и пустотами:

Истинная плотность в отличие от средней плотности является достаточно постоянной характеристикой, которая не может быть изменена, как средняя плотность материала, до изменения его химического состава или молекулярной структуры. Большинство строительных материалов имеют поры, поэтому у них истинная плотность всегда больше средней. Лишь у плотных материалов (стали, стекла, битума) истинная и средняя плотность равны, так как объемы пор очень малы.

Часто среднюю плотность материала относят к плотности воды, при
4 °С равной 1 г/см 3 , и тогда определяемая плотность становится безразмерной величиной, которую называют относительной плотностью.

Насыпная плотность r н (кг/м 3) – отношение массы материала в насыпном состоянии к его объему. Насыпную плотность определяют для сыпучих материалов (песка, щебня, цемента и т. п.). В ее значении отражается влияние не только пор в каждом зерне, но и межзерновых пустот в рыхлонасыпанном объеме материала.

Значения средней и насыпной плотности материалов являются необходимыми характеристиками при расчете прочности сооружения с учетом собственной массы, для определения объемов, способа и стоимости перевозки материалов и т. д.

Во многом свойства материала определяют количество, размер и характер пор. Пористость – относительная величина (обычно в процентах), показывающая, какая часть объема материала занята внутренними порами или пустотами (пустотность). Поры представляют собой ячейки, не заполненные твердым веществом (по величине до нескольких миллиметров). Более крупные поры, например, между зернами сыпучих материалов, или полости, имеющиеся в некоторых изделиях (пустотелый кирпич, панели из железобетона), называют пустотами.

Различают общую, открытую и закрытую пористость. Общая пористость вычисляется по формуле

.

Открытая пористость П о определяется по водопоглощению (см. ниже). Закрытая пористость П з равна разности П и П о.

Общая пористость колеблется в широких пределах: от 0,2-0,8 % – у гранита и мрамора, до 75-85 % – у теплоизоляционного кирпича и ячеистого бетона и свыше 90 % – у пенопластов и минеральной ваты.

Гидрофизические свойства – это свойства строительных материалов по отношению к действию воды (гигроскопичность, влажность, водопоглощение, влажностные деформации, водопроницаемость, водостойкость, а также морозостойкость – при одновременном действии воды и мороза).

Гигроскопичностью называют свойство пористого материала поглощать водяной пар из воздуха.

Влажность характеризует относительное содержание воды в материале в процентах.

Водопоглощение – способность материала впитывать и удерживать воду при непосредственном контакте с ней. Величина водопоглощения зависит от структуры материала, и прежде всего от открытой (капиллярной) пористости. Различают водопоглощение по массе В м (%),

,

и водопоглощение по объему В о (%),

,

где m нас – масса образца, насыщенного водой, г; m сух – масса сухого образца, г; V о – объем образца, см 3 ; r в – плотность воды, 1 г/см 3 .

Водопоглощение по массе изменяется в широких пределах, например, для гранита оно равно 0,02-0,7 %, тяжелого бетона – 2-4 %, кирпича –
8-15 %, для теплоизоляционного материала может быть более 100 %. Водопоглощение по объему характеризует в основном открытую пористость материала. Зная водопоглощение по массе В м и плотность ρ о, можно рассчитать водопоглощение по объему:

Влажностные деформации – это усадка и набухание. Усадка (усушка) – уменьшение объема и размеров материала при его высыхании. Оно вызывается уменьшением толщины слоев воды, окружающих частицы материала, и действием капиллярных сил, стремящихся их сблизить. Набухание (разбухание) – увеличение объема и размеров материала при его увлажнении. Оно происходит вследствие расклинивающего действия воды и уменьшения капиллярных сил.

Водопроницаемость – способность материала пропускать воду через свою толщу. Характеризуется величиной коэффициента фильтрации К ф (м 2 /ч), который определяется количеством воды, прошедшим через 1 м 2 площади в течение 1 ч при постоянном давлении.

Водонепроницаемость – способность материала не пропускать воду, и она связана с коэффициентом фильтрации обратной зависимостью. Для бетона водонепроницаемость характеризуется марками W 2, W 4, … W 20, обозначающими избыточное давление (0,2; 0,4; …2,0 МПа), при котором образец не пропускает воду при стандартном испытании (метод «мокрого пятна»). Водонепроницаемость повышается при уплотнении материала и уменьшении капиллярных пор.

Водостойкость характеризуется коэффициентом размягчения К р, который вычисляется по формуле

где R нас – предел прочности на сжатие в насыщенном водой состоянии, МПа; R сух – предел прочности на сжатие в сухом состоянии, МПа.

К неводостойким материалам относят материалы с К р менее 0,6, к ограниченно водостойким – материалы с К р не ниже 0,6, а к водостойким – материалы с К р не ниже 0,7 (0,8 – для гидротехнических сооружений и фундаментов).

Морозостойкость – способность материала выдерживать многократное и попеременное замораживание и оттаивание в насыщенном водой состоянии. Разрушение материала при его замораживании в насыщенном водой состоянии связано с образованием в порах льда, объем которого примерно на 9 % больше объема воды. Морозостойкость количественно оценивается маркой по морозостойкости. За марку по морозостойкости принимают наибольшее число циклов попеременного замораживания и оттаивания, которое выдерживают образцы материала без видимых признаков разрушения и определенного снижения прочности и потери массы. Установлены марки по морозостойкости: тяжелого бетона – F 25- F 1000, керамического и силикатного кирпичаF 15- F 50 и т.д.

Теплофизические свойства характеризуют отношение материала к действию тепла.

Теплопроводность – способность материала передавать тепло от тела с большей температурой к менее теплому. Характеризуется коэффициентом теплопроводности l (Вт/(м × °С), который равен

,

где Q – количество тепла, Дж; d – толщина материала, м; А – площадь сечения, м 2 ; (t 1 ­_ t 2) – разность температур, °С; Т – продолжительность прохождения тепла, с.

Теплопроводность зависит от структуры материала, его влажности и температуры. Существует эмпирическая формула Некрасова для определения теплопроводности материала по его средней плотности

где d – относительная плотность материала (плотность материала по отношению к плотности воды – 1 г/см 3), безразмерная величина.

Теплопроводность зависит от влажности материала, так как вода обладает большей теплопроводностью (в 25 раз) по сравнению с теплопроводностью воздуха.

Термическое сопротивление R , (м 2 × °С)/Вт, конструкции толщиной d равно

Теплоемкость определяется количеством теплоты, которое необходимо сообщить 1 кг данного материала, чтобы повысить его температуру на 1 °С. С повышением влажности материалов их теплоемкость возрастает, так как вода имеет теплоемкость 4,19 кДж/(кг × °С).

Огнеупорность – способность материала выдерживать длительное влияние высоких температур под нагрузкой.

Огнестойкость – способность материала выдерживать кратковременное воздействие открытого огня. Различают материалы: несгораемые , т.е. которые не горят и не поддерживают горение (бетон, металл, керамика); трудносгораемые , т.е. которые при воздействии огня горят (тлеют), а при удалении огня прекращают горение (асфальтобетон, пропитанная антипиренами древесина); сгораемые (древесина, полимерные материалы).

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Тверь 2005
УДК 691: 519.6.502 (075) ББК 30.3я7 + 38.3я7 Белов В.В., Петропавловская В.Б.Краткий курс материаловедения и технологии конст

Структура строительных материалов
Под структурой или строением материалов как физических тел понимают пространственное расположение частиц разной степени дисперсности и других структурных элементов с совокупностью устойчивых

Основные свойства материалов
Чтобы правильно выбрать материал, спроектировать и построить сооружение, надо хорошо знать свойства применяемых материалов. Выделяют основные свойства, важные для всех строительных материалов.

Механические свойства строительных материалов
Механические свойства характери­зуют способность материала сопротивляться внутренним напряжениям и деформациям под влиянием силовых, тепловых, усадочных или других воздействий. Механически

ОСНОВНЫЕ ВИДЫ СЫРЬЯ ДЛЯ ПРОИЗВОДСТВА СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ
Основным природным сырьем для производства строительных материалов являются горные породы. Их используют для изготовления керамики, стекла, металла, неорганических вяжущих веществ.

Горные породы как сырьевая база производства строительных материалов
Горные породы – это значительные по объему скопления минералов в земной коре, образовавшиеся в результате физико-химических процессов. Минералы – это вещества, являющиеся про

Магматические горные породы
Они могут быть: а) глубинными (интрузивными); б) излившимися (эффузивными). Глубинные – это породы, образовавшиеся при застывании магмы на разной глубине в земной коре. Излившиеся пор

Осадочные горные породы
Осадочные породы в зависимости от условий их образования делят на три подгруппы: а) обломочные породы или механи­ческие осадки – рыхлые (гравий, глины, пески), остав­шиеся на месте разрушения пород

Метаморфические горные породы
Метаморфизмом называют преобразование горных пород, происходящее в недрах земной коры под влиянием высоких тем­ператур и давлений. В этих условиях может происходить кри­сталлизация минералов

Техногенные вторичные ресурсы
По данным ЮНЕСКО, в мире ежегод­но извлекают из недр более 120 млрд. т руд, горючих ископаемых, другого сырья (20 т сырья на каждого жите­ля планеты). По масштабам извлекаемого и перерабатываем

ПРИРОДНЫЕ КАМЕННЫЕ МАТЕРИАЛЫ
Природные каменные материалы и изделия получают путем механической обработки горных пород, т.е. дробления, раскалывания, распиловки, отески, шлифовки (щебень, плиты и т.д.). Сырьем для получ

Виды и свойства природных каменных материалов
Грубообработанные каменные изделия.Бутовый камень (бут) – куски камня неправильной формы, размером не более 50 см по наибольшему измерению. Бутовый камень может быть рваный

Предохранение каменных материалов от разрушения
Основные причины разрушения природных каменных мате­риалов в сооружениях: замерзание воды в порах и трещинах, вы­зывающее внутренние напряжения; частое изменение температу­ры и влажности, вызывающе

Керамические материалы и изделия
Керамическими (от греческого «керамос» – глина) называют искусственные каменные материалы и изделия, получаемые высокотемпературным обжигом глин с минеральными добавками. Кл

Минеральных вяжущих
Минеральные (неорганические) вяжущие вещества представляют собой искусственные тонкоизмельченные порошки, способные при смешивании с водой (в отдельных случаях с растворами некоторых солей) обра

Гипсовые и ангидритовые вяжущие вещества
Гипсовые вяжущие– это порошкообразные материалы, состоящие из полуводного гипса (CaSO4 · 0,5H2O) и получаемые тепловой обработкой при температуре в преде

Воздушная строительная известь
Строительной воздушной известью называют вяжущее, состоящее в основном из активных оксидов кальция и магния и получаемое обжигом при температуре 900-1200 ° С кальциево-магниевых карбонатных горн

Портландцемент
Общая характеристика и вещественный состав портландцемента.Портландцемент был изобретен в 1824 году англичанином Джозефом Аспдиным и параллельно с ним русским промышленником Егором

Разновидности портландцемента
Разновидности ПЦ получают за счет частичного изменения минерального состава клинкера, введения активных минеральных добавок до 20 %, а также небольшого количества органических добавок (ПАВ). Эти ме

Многокомпонентные цементы с минеральными добавками и шлаковые цементы
Активными минеральными (гидравлическими) добавкаминазывают природные или искусственные вещества, которые при смешивании в тонкоизмельченном состоянии с воздушной известью и водой о

Цементы на основе клинкеров специального состава
Наиболее радикального изменения свойств цементов в нужную сторону добиваются путем получения клинкеров на основе другой, нежели у портландцемента, системы оксидов. К таким цементам в частности отно

Материалы для изготовления бетонов
Вяжущее вещество.Для изготовления обычного бетона наиболее широко применяют минеральные вяжущие вещества, прежде всего портландцемент и его разновидности. Цемент и вода являются ак

Бетонная смесь
Бетонная смесь представляет собой сложную многокомпонентную систему, состоящую из частичек вяжущего и новообразований, которые возникают при взаимодействии вяжущего с водой, зерен заполнителя, воды

Структура и свойства тяжелого бетона
Структура тяжелого бетона. Структуру бетона изучают на различных уровнях. Макроструктуру наблюдают невооруженным глазом или при небольшом увеличении. В качестве структурных

Подбор состава тяжелого бетона
От правильности проектирования состава тяжелого бетона зависят его плотность и прочность, которые, в свою очередь, во многом определяют такие важные свойства, как морозостойкость, водонепроницаемос

Специальные виды тяжелых бетонов
Высокопрочный модифицированный бетон. Отличается высокой прочностью на сжатие (60-80 МПа и выше), высокой плотностью, практически нулевым водопоглощением. Этот бетон получают на ос

Легкие и особо легкие бетоны
В современном строительстве наибольшее значение приобрело комплексное решение двух взаимосвязанных проблем: повышение теплозащитных свойств ограждающих конструкций и уменьшение материалоемкости стр

Железобетон
Железобетон – это композиционный материал, в котором бетон (матрица) и стальная арматура образуют единую систему. Бетон имеет высокую прочность на сжатие, но низкую прочность на растяжение и

Свойства растворов
Под удобоукладываемостью растворной смеси понимают ее способность укладываться на основание тонким однородным слоем. Удобоукладываемость характеризуется подвижностью, которая определяется ка

Сухие строительные смеси
Сухие строительные смеси (ССС) – это тщательно перемешанные композиции рационального состава, в которые в сухом виде входят вяжущие вещества, фракционированные заполнители, тонкодисперсные минер

СИЛИКАТНЫЕ ИЗДЕЛИЯ АВТОКЛАВНОГО ТВЕРДЕНИЯ
К силикатным изделиям автоклавного твердения относят материалы, получаемые из сырьевой смеси известково-кремнеземистого вяжущего и минеральных заполнителей путем гидротермального синтеза гидроси

Основные виды и марки сталей, применяемых в строительстве
В строительстве в основном применяют углеродистые стали обыкновенного качества, качественные конструкционные углеродистые стали и низколегированные конструкционные стали. Углеродистые с

Основные виды металлических изделий для строительства
В строительстве применяют основные виды металлоизделий: - сортамент прокатного металла и металлических изделий: а) сортовая сталь (круглая, квадратная, полосовая); б) листовая сталь

Защита металлов от коррозии
Различают химическую и электрохимическую коррозию металлов. Химическая коррозия происходит в результате окислительного или восстановительного процессов, протекающих под действием внешней сре

Свойства древесины
Свойства древесины подразделяются на физические и механические. Важное значение имеют также наличие в древесине тех или иных пороков и ее стойкость к загниванию. Физические свойств

Лесоматериалы и изделия из древесины
Лесоматериалыполучают механической обработкой древесины. Они подразделяются на круглые лесоматериалы, пиломатериалы, фрезерованные и строганые материалы, вторичные продукты: опилки

КОНСТРУКЦИОННЫЕ МАТЕРИАЛЫ НА ОСНОВЕ ОРГАНИЧЕСКИХ ВЯЖУЩИХ ВЕЩЕСТВ
Конструкционные материалы на основе органических вяжущих веществ, как и предыдущие их группы на основе неорганических вяжущих, являются безобжиговыми композитами. К ним относятся асфа

Битумные и дегтевые вяжущие
Битумы(от санскритского «гвитумен», т.е. смола) – органические вещества черного или темно-бурого цвета, состоящие из смеси высокомолекулярных углеводородов и их неметаллических

Асфальтовые бетоны и растворы
Асфальтобетон (асфальтобетонная смесь) – важнейший дорожно-строительный материал, получаемый в результате уплотнения при оптимальной температуре рационально рассчитанной и приготовленной смеси,

Полимерные материалы и изделия
Полимерныминазывают материалы, в состав которых в качестве основного компонента входят высокомолекулярные органические вяжущие вещества (полимеры). Благодаря способности в процессе

Модификация строительных материалов полимерами
Одним из эффективных направлений улучшения свойств традици­онных материалов – бетона, дерева, естественного камня, битума и пр. – считается обработка их полимерами. Модификацию строитель­ных матери

ГИДРОИЗОЛЯЦИОННЫЕ И КРОВЕЛЬНЫЕ МАТЕРИАЛЫ
Гидроизоляционными и кровельными называют строительные материалы, кото­рые должны обладать водонепроницаемостью, а также соответствовать определенным эксплуатационным требованиям по прочности, д

Кровельные и гидроизоляционные материалы на основе битумов и дегтей
Рулонными называются гидроизоляционные материалы или изделия, отгружаемые на строительные объекты или для выполнения ремонтных строительных работ в виде полотна определенной длины,

Кровельные и гидроизоляционные материалы на основе полимеров
Гидроизоляционные пленочные (рулонные) материалы изготовляют экс­трузией, механическим или пневматическим вытягиванием из поливинилхлорида, полиэтилена, пропилена, ацетилцеллюлозы,

Неорганические теплоизоляционные материалы и изделия
Минераловатные изделия. Минеральная вата – волокнистый бесформенный материал, состоящий из тонких стекловидных волокон диаметром 5-15 мкм, которые полу­чают из расплава легк

Органические теплоизоляционные материалы и изделия
Материалы на основе органического сырья природного происхождения. Фибролит – плитный материал из древесной шерсти и неоргани­ческого вяжущего вещества. Древесную шерсть (стр

Звукопоглощающие материалы
Особенности структуры и свойств.Звукопоглощающие материалы и изделия предназначаются для снижения уровня звукового давления в помещениях жилых, производственных и обще­ственных зда

Звукоизоляционные материалы
Звукоизоляционные, или, как их часто еще называют, про­кладочные, материалы применяют для звукоизоляции от ударного шума в многослойных конструкциях перекрытий и перего­родок и частично для поглоще

Лакокрасочные материалы
Лакокрасочными материалами называют вязкожидкие составы, наносимые на поверхность конструкции тонким слоем, который через определенное время отвердевает и образует пленку, прочно сцепляющуюся с

Материалы на основе древесины и продуктов ее переработки
Древесина относится к традиционным материалам, издавна используемым при отделке помещений и устройстве покрытий полов. Она долгое время будет удерживать и, может быть, улучшать свои позиции даже на

Отделочные каменные материалы
Природный камень применяется в основном для наружной отделки мону­ментальных и общественных зданий. Для этой цели используют пли­ты и блоки из гранита, диорита, сиенита, лабрадорита, андезит

Отделочные материалы из керамики, стекла, металла
Из керамики наиболее распространены облицовочные кирпич, блоки, плитки, получаемые из цветных природных глин белого, крас­ного и кремового цветов, а также с добавками пигментов (серых, черны

Отделочные материалы на основе полимеров
Материалы для отделки стен и потолков.К ним относятся декоративные пленки, рулоны для облицовки стен, потолков, встроенной мебели; набранные рейки, профили, плинтусы, раскладки

Общие принципы получения строительных материалов
При изготовлении строительных материалов и изделий сырье подвергают комплексу механических, химических, физико-химиче­ских, тепловых и других воздействий. В результате реализации и определенной пос

Основы технологии бетона и железобетона
Технология бетона предполагает следующие основные операции: подготовка исходных компонентов, их дозирование и приготовление бетонной смеси, укладка смеси и ее уплотнение (формование изделий)

Железобетонных конструкций
Железобетонные конструкции подразделяют на сборные и монолитные. Первые изготовляют на заводах или полигонах и монтируют на строительной площадке. Монолитные железобетонные конструкции бетонируют н

Решение задач по основным свойствам материалов
Знание основных свойств строительных материалов дает возможность рационально использовать их, а также производить инженерно-техни-ческие расчеты в строительстве. Так, например, по известным значени

Решение задач по свойствам неорганических вяжущих веществ
Современное строительное производство располагает большой номенклатурой вяжущих веществ с широким диапазоном их свойств. При применении таких широко распространенных вяжущих, как по

Решение задач по свойствам тяжелого бетона
Свойства бетонов определяются качеством составляющих их компонентов и количественным соотношением между ними. Поэтому чрезвычайно важно иметь практические навыки как в оценке качества составляющих

Расчет предварительного состава тяжелого бетона
Расчет предварительного состава тяжелого бетона производят на основе зависимости прочности бетона от активности цемента, цементно-водного фактора и качества заполнителей, а также зависимости подвиж

Корректирование состава бетона по пробному замесу
После корректирования удобоукладываемости бетонной смеси на пробном замесе определяют фактические расходы сырьевых материалов на пробный замес. Таблица П.5. Оптимальные зна

Определение полевого (производственного) состава бетона
Полевой состав бетона рассчитывают с учетом влажности заполнителей по формулам: Цп = Цф;

Определение расходов материалов на замес бетоносмесителя
Расходы материалов на замес бетоносмесителя рассчитывают по формулам: ;

Исходные данные для расчета
Рассчитать состав тяжелого бетона с классом (маркой) по прочности на сжатие В _20_ (М ____). Удобоукладываемость бетонной смеси по подвижности (жесткости) составляет ОК

Количество материалов и характеристики бетонной смеси в пробном замесе
Количество материалов на объем пробного замеса, кг Цемент Цз (Цзф) Вода Вз (Взф) Песок Пз (Пзф) Щебень Щз

ОСНОВНЫЕ ВИДЫ СЫРЬЯ ДЛЯ ПРОИЗВОДСТВА
СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ ………...…….................................. 2.1. Горные породы как сырьевая база производства строительных материалов …………………………...........

Виктория Борисовна Петропавловская
КРАТКИЙ КУРС МАТЕРИАЛОВЕДЕНИЯ И ТЕХНЕОЛОГИИ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ ДЛЯ СТРОИТЕЛЬСТВА Учебное пособие Издание второе Редактор

Строительные материалы обладают комплексом физических свойств. Числовые показатели физических свойств определяются с помощью специальных методов и приборов.

К физическим относятся свойства, выражающие способность материалов реагировать на воздействия физических факторов- гравитационных, т. е. основанных на законе земного притяжения, тепловых, водной среды, акустических, электрических, излучения и т. п.

Средняя плотность характеризует массу единицы объема материала в естественном состоянии (вместе с порами). Эта важная физическая характеристика определяется путем деления массы образца на его объем. Для точного измерения объема удобнее принимать образцы правильной геометрической формы, хотя имеются несложные приемы измерения объема образцов и неправильной формы. При влажных образцах отмечается величина влажности, при которой определялась средняя плотность.

Среднюю плотность рыхлых материалов, например песка, щебня, гравия, называют насыпной плотностью. В ее величине отражается влияние не только пор в каждом зерне или куске, но и межзерновых пустот в рыхлонасыпанном объеме материала.

Истинная плотность - масса единицы объема однородного материала в абсолютно плотном состоянии, т. е. без учета пор, трещин или других полостей, присущих материалу в его обычном состоянии.

Пористость - степень заполнения объема материала порами. Если требуется выяснить, являются ли поры замкнутыми или сквозными, как распределены они в объеме материала по своим размерам, какое имеется реальное соотношение пор разных диаметров, тогда производят дополнительные исследования с применением специальных методов: ртутной порометрии, сорбционного, капиллярного всасывания и др.

Величина пористости и размер пор в значительной мере влияют на прочность материала. При одном и том же веществе строительный материал тем слабее сопротивляется механическим силам, усилиям другого происхождения (тепловым, усадочным и т. п.), чем больше и крупнее поры в его объеме. Для некоторых разновидностей материалов существуют ярко выраженные пропорциональные зависимости: чем меньше средняя плотность (больше пористость), тем меньше прочность материала. От пористости зависят и другие качественные характеристики материала, например способность проводить теплоту и звук, поглощать воду.

От пор отличаются пустоты. Они значительно крупнее пор и всегда отчетливо видны, располагаясь между зернами насыпного материала. Поры обычно заполнены воздухом или водой, тогда как вода в пустотах не задерживается, особенно в широкополостных пустотах. При воздействии статических или циклических тепловых факторов материал характеризуется теплопроводностью, теплоемкостью, температуроустойчивостью, огнестойкостью и другими свойствами.

Теплопроводность - способность материала проводить через свою толщу тепловой поток, возникающий под влиянием разности температур на поверхностях, ограничивающих материал. Это свойство характеризуется теплопроводностью, которая показывает количество теплоты, которое проходит через стенку толщиной 1 м и площадью 1 м2 при перепаде температур на противоположных поверхностях в 1°С в течение 1 часа.

Теплоемкость характеризует способность материала аккумулировать теплоту при нагревании, причем с повышением теплоемкости больше может выделяться теплоты при охлаждении материала. Температура в комнате, например, может сохраняться устойчивой более длительный период при повышенной теплоемкости использованных материалов для пола, стен, перегородок и других частей помещения, поглощающих теплоту в период действия отопительной системы.

Огнестойкость характеризует способность строительных материалов выдерживать без разрушения действие высоких температур в течение сравнительно короткого промежутка времени (пожара). В зависимости от степени огнестойкости строительные материалы разделяют на несгораемые, трудносгораемые и сгораемые. Несгораемые материалы в условиях высоких температур не подвержены воспламенению, тлению или обугливанию. При этом некоторые материалы почти не деформируются {кирпич, черепица), другие могут сильно деформироваться (сталь) или разрушаться, растрескиваться (природные камни, например гранит), особенно при одновременном воздействии воды, применяемой при тушении пожаров. Трудносгораемые материалы под воздействием высоких температур тлеют и обугливаются, но при удалении огня процессы горения, тления или обугливания полностью прекращаются. Среди такого рода материалов находятся фибролит, гидроизол, асфальтовый бетон и др. Сгораемые материалы воспламеняются и горят или тлеют под воздействием огня или высокой температуры, причем горение или тление продолжается также после удаления источника огня. Среди них - древесина, войлок, битумы, смолы и др.

Если источник высокой температуры (выше 1580°С) действует на материал в течение длительного периода времени (соприкосновение с печами, трубами, нагревательными котлами и т. п.), а материал сохраняет необходимые технические свойства и не размягчается, то его относят к огнеупорным. Огнеупорным и являются шамот, динас, магнезитовый кирпич и другие материалы, применяемые для внутренней футеровки (облицовки) металлургических и промышленных печей. Материалы, способные длительное время выдерживать воздействие высоких температур (до 1000°С) без потери или только с частичной потерей прочности, относят к жаростойким, например жаростойкий бетон, керамический кирпич, огнеупорные материалы и др.

Температуростойкость или термостойкость - способность выдерживать чередование (циклы) резких тепловых изменений, нередко с переходом от высоких положительных к низким отрицательным температурам. Это свойство материала зависит от степени его однородности и от способности каждого компонента к тепловым расширениям.

Водопоглощаемость - способность материала впитывать и удерживать воду. Процесс впитывания воды в поры называется водопоглощением и в лабораторных условиях проходит при нормальном атмосферном давлении. Образец постепенно погружают в воду и его полного водопоглощения достигают путем кипячения в воде, если температура 100°С не влияет на состав и структуру материала. Выдерживают образцы в воде в течение определенного срока или до постоянной массы.

Гигроскопичностью называется способность материала поглощать влагу из влажного воздуха или парогазовой смеси. Степень поглощения воды или паров, которые частично конденсируются в порах и капиллярах материала, зависит от относительной влажности и температуры воздуха, парциального давления смеси. С увеличением относительной влажности и со снижением температуры воздуха гигроскопичность повышается.

Влагоотдачей называют способность материала отдавать влагу в окружающую среду. Влага, находящаяся в тонких порах и капилляра, удерживается прочно, особенно адсорбционно-пленочная влага, что способствует ускоренному передвижению поглощаемой воды по сообщающимся порам в материале. Если между влажностью окружающей среды воздуха и влажностью материала устанавливается равновесие, то отсутствуют гигроскопичность и влагоотдача, а состояние принято именовать воздушно-сухим.

Водопроницаемость - способность материала пропускать воду под давлением.

Водостойкость - способность материала сохранять в той или иной мере свои прочностные свойства при увлажнении. Эти материалы можно применять в сырых местах без специальных мер по защите их от увлажнения. На стабильность структуры и свойств материала заметное влияние оказывает попеременное увлажнение и просыхание. Некоторые материалы принято проверять на водостойкость путем циклического насыщения образцов водой и их высушивания.

В жестких условиях находится тот материал, который увлажняется при резких температурных перепадах. Вода, поглощенная материалом, особенно порами в поверхностном слое, замерзает при переходе через нулевую температуру с расширением на 8,5%. Ритмично чередующаяся кристаллизация льда в порах с последующим оттаиванием приводит к дополнительным внутренним напряжениям. Могут возникнуть микро- и макротрещины со снижением прочности, с возможным разрушением структуры. Способность материала, насыщенного водой, выдерживать многократное попеременное (циклическое) замораживание и оттаивание без значительных технических повреждений и ухудшения свойств называется морозостойкостью. Установлены нормативные пределы допустимого снижения прочности или уменьшения массы образцов после испытания материала на морозостойкость при определенном количестве циклов замораживания и оттаивания. Некоторые материалы, например бетоны, маркируются по морозостойкости в зависимости от количества циклов испытания, которые они выдерживают без видимых признаков разрушения. Обычно замораживание образцов, насыщенных водой, производится в специальных морозильных камерах, а оттаивание организуется в воде, имеющей комнатную температуру. Продолжительность одного цикла составляет одни сутки. Многие материалы выдерживают 200 ... 300 циклов и более. Могут применяться и ускоренные методы испытания на морозостойкость, или сохранность в солевых растворах при чередующейся кристаллизации соли в порах материала. В отношении некоторых материалов, например природного камня, о морозостойкости судят по величине коэффициента размягчения.

К физическим свойствам относятся также звукопоглощаемость, поглощаемость ядерных излучений и рентгеновских лучей, электропроводность, светопроницаемость и др. С помощью испытания соответствующих образцов материала определяются числовые характеристики этих свойств. Они сравниваются с допустимыми по нормам.

Физические свойства материалов

Основные свойства материалов

Чтобы правильно выбрать материал, спроектировать и построить сооружение, нужно хорошо знать свойства применяемых материалов. Выделяют основные свойства, важные для всœех строительных материалов.

Классификация базовых свойств. Учитывая зависимость отхарактера работы материала в конструкциях и его взаимодействия с окружающей средой различают: а) физические свойства (удельные и структурные характеристики, гидрофизические, теплофизические, акустические, электрические); б) механические свойства (деформативные и прочностные); в) химические свойства; г) биологические свойства; д) интегральные свойства – долговечность и надежность. Свойства материала всœегда оценивают числовыми показателями, которые устанавливают путем испытаний.

Удельные и структурные характеристики - ϶ᴛᴏ истинная, средняя и насыпная плотность материала, а также различные виды пористости.

Истинная плотность r (г/см 3) – масса т единицы объёма V а материала в абсолютно плотном состоянии без пор и пустот:

Средняя плотность r о (кг/м 3) – масса т единицы объёма V о материала в естественном состоянии вместе с порами и пустотами:

Истинная плотность в отличие от средней плотности является достаточно постоянной характеристикой, которая не должна быть изменена, как средняя плотность материала, до изменения его химического состава или молекулярной структуры. Большинство строительных материалов имеют поры, в связи с этим у них истинная плотность всœегда больше средней. Лишь у плотных материалов (стали, стекла, битума) истинная и средняя плотность равны, так как объёмы пор очень малы.

Часто среднюю плотность материала относят к плотности воды, при 4 °С равной 1 г/см 3 , и тогда определяемая плотность становится безразмерной величиной, которую называют относительной плотностью.

Насыпная плотность r н (кг/м 3) – отношение массы материала в насыпном состоянии к его объёму. Насыпную плотность определяют для сыпучих материалов (песка, щебня, цемента и т. п.). В ее значении отражается влияние не только пор в каждом зерне, но и межзерновых пустот в рыхлонасыпанном объёме материала.

Значения средней и насыпной плотности материалов являются необходимыми характеристиками при расчете прочности сооружения с учетом собственной массы, для определœения объёмов, способа и стоимости перевозки материалов и т. д.

Во многом свойства материала определяют количество, размер и характер пор.
Размещено на реф.рф
Пористость – относительная величина (обычно в процентах), показывающая, какая часть объёма материала занята внутренними порами или пустотами (пустотность). Поры представляют из себяячейки, не заполненные твердым веществом (по величинœе до нескольких миллиметров). Более крупные поры, к примеру, между зернами сыпучих материалов, или полости, имеющиеся в некоторых изделиях (пустотелый кирпич, панели из желœезобетона), называют пустотами.

Различают общую, открытую и закрытую пористость. Общая пористость вычисляется по формуле

.

Открытая пористость П о определяется по водопоглощению (см. ниже). Закрытая пористость П з равна разности П и П о.

Общая пористость колеблется в широких пределах: от 0,2-0,8 % – у гранита и мрамора, до 75-85 % – у теплоизоляционного кирпича и ячеистого бетона и свыше 90 % – у пенопластов и минœеральной ваты.

Гидрофизическиесвойства - ϶ᴛᴏ свойства строительных материаловпо отношению к действию воды (гигроскопичность, влажность, водопоглощение, влажностные деформации, водопроницаемость, водостойкость, а также морозостойкость – при одновременном действии воды и мороза).

Гигроскопичностью называют свойство пористого материала поглощать водяной пар из воздуха.

Влажность характеризует относительное содержание воды в материале в процентах.

Водопоглощение – способность материала впитывать и удерживать воду при непосредственном контакте с ней. Величина водопоглощения зависит от структуры материала, и прежде всœего от открытой (капиллярной) пористости. Различают водопоглощение по массе В м (%),

,

и водопоглощение по объёму В о (%),

,

где m нас – масса образца, насыщенного водой, г; m сух – масса сухого образца, г; V о – объём образца, см 3 ; r в – плотность воды, 1 г/см 3 .

Водопоглощение по массе изменяется в широких пределах, к примеру, для гранита оно равно 0,02-0,7 %, тяжелого бетона – 2-4 %, кирпича – 8-15 %, для теплоизоляционного материала должна быть более 100 %. Водопоглощение по объёму характеризует в основном открытую пористость материала. Зная водопоглощение по массе В м и плотность ρ о, можно рассчитать водопоглощение по объёму:

Влажностные деформации - ϶ᴛᴏ усадка и набухание. Усадка (усушка) – уменьшение объёма и размеров материала при его высыхании. Оно вызывается уменьшением толщины слоев воды, окружающих частицы материала, и действием капиллярных сил, стремящихся их сблизить. Набухание (разбухание) – увеличение объёма и размеров материала при его увлажнении. Оно происходит вследствие расклинивающего действия воды и уменьшения капиллярных сил.

Водопроницаемость – способность материала пропускать воду через свою толщу. Характеризуется величиной коэффициента фильтрации К ф (м 2 /ч), который определяется количеством воды, прошедшим через 1 м 2 площади в течение 1 ч при постоянном давлении.

Водонепроницаемость – способность материала не пропускать воду, и она связана с коэффициентом фильтрации обратной зависимостью. Для бетона водонепроницаемость характеризуется марками W 2, W 4, … W 20, обозначающими избыточное давление (0,2; 0,4; …2,0 МПа), при котором образец не пропускает воду при стандартном испытании (метод ʼʼмокрого пятнаʼʼ). Водонепроницаемость повышается при уплотнении материала и уменьшении капиллярных пор.

Водостойкость характеризуется коэффициентом размягчения К р, который вычисляется по формуле

где R нас – предел прочности на сжатие в насыщенном водой состоянии, МПа; R сух – предел прочности на сжатие в сухом состоянии, МПа.

К неводостойким материалам относят материалы с К р менее 0,6, к ограниченно водостойким – материалы с К р не ниже 0,6, а к водостойким – материалы с К р не ниже 0,7 (0,8 – для гидротехнических сооружений и фундаментов).

Морозостойкость – способность материала выдерживать многократное и попеременное замораживание и оттаивание в насыщенном водой состоянии. Разрушение материала при его замораживании в насыщенном водой состоянии связано с образованием в порах льда, объём которого примерно на 9 % больше объёма воды. Морозостойкость количественно оценивается маркой по морозостойкости. За марку по морозостойкости принимают наибольшее число циклов попеременного замораживания и оттаивания, ĸᴏᴛᴏᴩᴏᴇ выдерживают образцы материала без видимых признаков разрушения и определœенного снижения прочности и потери массы. Установлены марки по морозостойкости: тяжелого бетона – F 25- F 1000, керамического и силикатного кирпича – F 15- F 50 и т.д.

Теплофизические свойства характеризуют отношение материала к действию тепла.

Теплопроводность – способность материала передавать тепло от тела с большей температурой к менее теплому. Характеризуется коэффициентом теплопроводности l (Вт/(м × °С), который равен

,

где Q – количество тепла, Дж; d – толщина материала, м; А – площадь сечения, м 2 ; (t 1 ­_ t 2) – разность температур, °С; Т – продолжительность прохождения тепла, с.

Теплопроводность зависит от структуры материала, его влажности и температуры. Существует эмпирическая формула Некрасова для определœения теплопроводности материала по его средней плотности

где d – относительная плотность материала (плотность материала по отношению к плотности воды – 1 г/см 3), безразмерная величина.

Теплопроводность зависит от влажности материала, так как вода обладает большей теплопроводностью (в 25 раз) по сравнению с теплопроводностью воздуха.

Термическое сопротивление R ,(м 2 × °С)/Вт, конструкции толщиной d равно

Теплоемкость определяется количеством теплоты, ĸᴏᴛᴏᴩᴏᴇ крайне важно сообщить 1 кг данного материала, чтобы повысить его температуру на 1 °С. С повышением влажности материалов их теплоемкость возрастает, так как вода имеет теплоемкость 4,19 кДж/(кг × °С).

Огнеупорность – способность материала выдерживать долгое влияние высоких температур под нагрузкой.

Огнестойкость – способность материала выдерживать кратковременное воздействие открытого огня. Различают материалы: несгораемые , ᴛ.ᴇ. которые не горят и не поддерживают горение (бетон, металл, керамика); трудносгораемые , ᴛ.ᴇ. которые при воздействии огня горят (тлеют), а при удалении огня прекращают горение (асфальтобетон, пропитанная антипиренами древесина); сгораемые (древесина, полимерные материалы).

Физические свойства материалов - понятие и виды. Классификация и особенности категории "Физические свойства материалов" 2014, 2015.

Основные свойства материалов

Физические свойства материалов – характеризуют физическое состояние материалов или отношения данного материала к протеканию, каких либо физических процессов. 1. Истинная плотность материала – отношение массы материала к его объему в абсолютно плотном состоянии, без пор.

2. Средняя плотность – величина определяемая отношением массы к объему материала в естественном состоянии.


Например: берем условно кирпич - - -

Для пористых материалов истинная плотность всегда больше чем средняя. Для плотных материалов истинная и средняя плотность будет равна ρ=ρ СР Истинная плотность является величиной постоянной, а средняя плотность величиной переменной и она зависит от внешних факторов, от пористости материала, от характера пор, водопоглощения и т. д. 3. Пористость – степень заполнения объема материала порами. П – пористость

Важно знать не количественный показатель пористости, но и характер пор, т. е. крупные поры или мелкие, открытые или замкнутые сообщающиеся или нет.

4. Гигроскопичность – способность материала впитывать водяные пары из воздуха.

Материалы, притягивающие пары из воздуха называются гидрофильные. А отталкивающие называются гидрофобные. Гигроскопичность материала зависит от пористости и от характера пор, от внешних условий, зависит от природы вещества (например: древесина, пенопласт). 5. Морозостойкость – свойство насыщенного водой материала выдерживать многократное попеременное замораживание и оттаивание без признаков разрушения и значительного снижения прочности. Материал считается морозостойким если его потеря в массе составила не более 5%, а потеря прочности не менее 25%. К РАЗМ – коэффициент размягчения. Если К РАЗМ >75% то материал считается морозостойким. Наиболее морозостойкими являются плотные материалы. Характеристикой морозостойкости является марка, которая показывает количество выдержанных циклов замораживания и оттаивания. 6. Водопоглащение – способность материала впитывать и удерживать воду. Материалы с не сообщающимися порами будет минимальным. Рассчитывают водопоглащение по массе и объему. По массе:

m – масса насыщенного водой материала m 1 – масса сухого материала По объему:

V – объем в естественном состоянии. Водопоглащение зависит от количественного показателя пористости, от размера пор, от того закрыты они или открыты, сообщаются или нет. 7. Теплопроводность – способность материала пропускать тепло через свою толщину. Основным показателем является коэффициент теплопроводности, который численно равен количеству тепла, проходящему через материал толщиной в один метр, площадью в один метр квадратный при разности температур t 2 и t 1 на параллельных плоскостях в 1° и время в один час. λ – лямбда Q – количество тепла f - площадь b – толщина t 1 и t 2 – разность температур Z – время

Плотные материалы имеют большую теплопроводность. Коэффициент теплопроводности, так же как и коэффициент теплоемкости необходимы при проведении теплотехнических расчетов ограждающих конструкций. 8. Теплоемкость – способность материала поглощать при нагревании тепло и выделять при его охлаждении. Механические свойства – характеризуют способность материала сопротивляться разрушающему действию или деформации внешних сил. 1. Прочность – способность материала сопротивляться разрушению под действием внутренних напряжений возникающих от внешних сил.

В конструкциях под действием внешних сил возникают внутренние напряжения (σ – сигма). При расчете строительных конструкции используется такой показатель, как предел прочности (R – эр). Предел прочности соответствует внутренним напряжениям, которые возникают в конструкции при действии разрушающей силы. (Р – действие разрушающей силы). В конструкциях на случай непредвиденных нагрузок создается запас прочности. Показателем прочности для разных материалов, как правило, является марка по прочности, которая численно равна приделу прочности этого материала на сжатие. (Марка равна пределу прочности) 2. Твердость – способность материала сопротивляться проникновению в него другого более твердого материала. Для материалов из пластмасс твердость определяется методом вдавливания металлического шарика (твердость по Бриннелю). Для природных каменных материалов твердость определяется по шкале твердости Мооса. Упругопластические свойства. Упругость – способность материала деформироваться под нагрузкой и восстанавливать свою форму и размеры после ее снятия. Пластичность – способность материала деформироваться под нагрузкой без разрыва и трещин и сохранять изменившиеся форму и размеры после снятия нагрузки. Хрупкость – свойство материала мгновенно разрушатся под действием силы внешних сил, без предварительной видимой деформации. Истираемость – свойство материала изменятся в объеме и масс под действием внешних истирающих усилий. Химические свойства – характеризуют способность материала сопротивляться воздействию кислот, солей, газов и т. д. Они характеризуются химически-коррозиционной стойкостью материалов.

Лесные материалы

Истинная плотность для всех пород 1,55гр/м 3 . Средняя плотность будет колебаться от 0,37 – 0,7гр/м 3 . Основное свойство древесины это влажность. Влажность – это массовое количество воды, содержащиеся в данный момент в древесине. По степени влажности древесину можно разделить на три группы:

    мокрая или свежесрубленная древесина с влажностью ≥35%. воздушно-сухая древесина с влажностью ≥15…20% комнатно-сухая ≥8…12%.

Стандартная влажность 12%.

Для древесины гигроскопичность очень высокая. Зависит от породы древесины и от внешних условий. Высокая гигроскопичность и водопоглащение древесины приводят к усушке или разбуханию. Сопротивление древесины механическим воздействиям неодинаково, в зависимости от направления волокон. (это называется анизотропия). Хорошо воспринимает сжатие, вдоль волокон и изгиб. Защита древесины от разрушения и возгорания.

Разрушение.

Две группы мер:

1. конструктивные меры.

А) организационный отвод воды, от деревянных конструкций

Б) обшивка дома

В) окраска

2. химические меры.

Пропитка антисептиками.

Антисептики – это вещества, которые предохраняют древесину от разрушения, они должны быть безвредны для людей и животных, не должны иметь цвета и запаха. Они делятся на три группы: 1. водорастворимые 2. масляные 3. пасты Возгорание. Две группы мер: 1. конструктивные меры Удаление деревянных конструкций от источников возгорания. Защита деревянных конструкций металлическими или асбестоцементными листами. Покраска красками на основе жидкого стекла. 2. химические меры. Пропитка антипиренами. Антипирены – это вещества препятствующие горению и древесина, пропитанная этими составами, в очаге огня не горит, а тлеет.

Применение древесины.

Древесина широко применяется в строительстве, для внутренней и наружной отделки. А так же для строительства домов, бань и т.д.

Горные породы

Природными каменными материалами называются строительные материалы, получаемые из горных пород путем механической обработки. Минералами называются тела являющиеся продуктами природных реакций и обладающие в каждом участке своей массы, определенным химическим составом и характерными химическими свойствами.

Применение горных пород

Глина – керамика

Ракушечник – для блоков

Пенза – для утепления

Известняк – для добавок в растворы


Защита природных каменных материалов от разрушения. 1.конструктивные меры. А) организация отвода воды от конструкции Б) шлифовка и полировка камня 2.химические меры. Кремнефторизация – пропитка поверхности камня солями кремнефтористой кислоты. При этом происходит химическая реакция между кислотой и минералами камня с образованием водонерастворимых соединений, которые уплотняют поверхностный слой камня.

Керамические материалы

Керамическими материалами называются искусственные каменные материалы, получаемые из глиняных масс путем формования и последующего обжига.

Свойства и строение керамических изделий.

Керамические изделия отличаются высокой прочностью (при правильном изготовлении), долговечностью, стойкостью к агрессивным средам и стойкостью против истирания. Технические свойства керамических изделий находятся в полной зависимости от состава и строения керамического черепка, т.е. от свойств того материала из которого состоят изделия. По водопоглощаемости изделий можно судить о характере пористости их черепка. Все керамические материалы в зависимости от пористости делятся на две группы:

    плотные – с водопоглощением меньше 5% пористые – с водопоглощением больше 5%

изделия могут быть глазурованные и неглазурованные

Сырье для производства керамики .

Делится на два вида, пластичные и непластичные материалы. Пластичные – глина, каолин. Чтобы снизить пластичность высокопластичных глин к ним добавляют малопластичные глины или отощатели (зола, известь, древесные опилки, металлургические шлаки). Чтобы повысить пластичность глин добавляют высокопластичные глины, органические пластифицирующие добавки, так же применяют пропаривание и воакумирование. Производство керамических изделий.

1. добыча сырьевых материалов

2. составление керамической массы и подготовка ее для формования. Подготовка керамической массы в зависимости от свойств исходного сырья и вида изготавливаемой продукции осуществляют следующими способами:

А) полусухой способ (влажность сырья 8…12%)

Б) пластический способ (влажность сырья 20…25%)

В) мокрый или шлинерный способ (влажность сырья до 68%)

3. формование изделий одним из следующих способов.

Пластическое и сухое прессование, литье в холодном или горячем прессовании.

4. сушка полуфабриката + дополнительная отделка.

5. глазурование изделия

Применение керамических изделий

Кирпич – стеновой материал

Плитка – отделка

Сантехнический фаянс

Черепица – крыша

Керамзит утепление

Стеновые материалы.

Кирпич глиняный обыкновенный. Выпускается в соответствии с ГОСТ

250/120/65 – красный обыкновенный

250/120/88 – модульный

При правильном изготовлении кирпич характеризуется пористым строением, значительной прочностью и долговечностью. При нарушении технологии изготовления кирпича может получаться, недожженные или пережженные изделия.

Кирпич выпускают следующих марок по прочности: 75, 100, 125, 150, 200, 250, 300. Изготавливают кирпич двумя способами: пластическим и полусухим.

Металлы.

Металлы – это простые вещества, обладающие в обычных условиях характерными свойствами. (высокой прочностью, электропроводностью, свариваемостью и т. д.) Сплавы – твердые или жидкие системы, образованные сплавлением двух и более металлов.


Черные металлы – это сплав железа с углеродом.

Чугун – сплав железа с углеродом. Где содержание углерода колеблется от 2…4,3%, а в специальных чугунах - ферросплавов 5 и более %. В чугуне присутствуют такие элементы, как кремний, фосфор и др. которые влияют на свойства чугуна. Сера и фосфор являются вредными примесями (повышают хрупкость). В зависимости от формы, в которой углерод содержится в чугуне, различают серые (литейные) и белые (предельные) чугуны. В строительстве применяют серые чугуны (трубы, ванны, опоры, башмаки колонн – (хорошо работает на сжатие)). Сталь – сплав железа с углеродом, где углерода содержится до 2%. В отличии от чугуна (хрупкого металла), стали пластичны, упруги и обладают высокими технологическими свойствами.

Они классифицируются: