Утеплители Изоляция Блоки

Положения креационизма. Креационисты. Аналогичные и гомологичные органы. Примеры

Более научен, чем креационизм. Бытие Бога лежит за пределами экспериментальной проверки, поэтому оба мировоззрения являются религиозными по сути. Вопрос лишь в том, какая теория - эволюционистская или креационистская лучше объясняет тот экспериментальный опыт, который накопила современная наука.

Евреи и христиане полагаются на Библию (или как минимум Ветхий Завет , Тору) как основную информацию о Сотворении, в то время как мусульмане используют Коран (есть креационисты и среди мусульман). В отличие от этого, приверженцы концепции разумного замысла не религиозного характера, т.е. в основу их убеждений положена не вера; вместо этого они утверждают что Вселенная была создана на основании исключительно эмпирических доказательств.

Критерий отличия эволюциониста от креациониста. Существуют креационисты, которые признают роль эволюции в истории Земли (так называемый «староземельный креационизм »), а также эволюционисты, которые считают себя людьми верующими, как например, сам Дарвин в зрелом возрасте. Поэтому основной критерий отличия креациониста от эволюциониста - критерий веры в богодухновенность и авторитет Священного Писания . В общем случае креационистом следует считать человека, признающего богодухновенность Библии и сотворение мира и человека Богом. Эволюционисты же, несмотря на религиозность, не считают Библию в вопросах естествознания авторитетом, допуская любые научные теории, в том числе абиогенез - возникновение жизни из неживой материи и происхождение человека от обезьяны . Термин «креационизм» - относительно молодой, но само мировоззрение старо как мир .

Ниже приводятся, имена и краткая информация только части наиболее известных учёных и исследователей, которых можно было бы назвать современным термином креационист .

Средневековье

В христианском мире Средневековой цивилизации вера в Божественное Сотворение была преобладающей, поэтому целесообразнее и легче было бы назвать тех, кто отрицал как Бога, так и авторитет Библии.

Эпоха XVI-XVIII веков

  • Роберт Бойль (1627-1691) - англо-ирландский физик, химик и богослов, один из основателей Общества наук
  • Тихо Браге (1546-1601) - датский астроном, математик и химик
  • Фрэнсис Бэкон (1561-1626) - английский философ и пропагандист науки
  • Джон Вудворд (1665-1728) - английский учёный, основоположник палеонтологии
  • Галилео Галилей (1564-1642) - итальянский изобретатель, физик и астроном
  • Уильям Гершель (1738-1822) - английский астроном, открыватель планеты Уран
  • Иоганн Кеплер (1571-1630) - немецкий учёный, основатель современной теоретической астрономии
  • Николай Коперник (1473-1543) - польский астроном, теоретик гелиоцентрической системы мира
  • Жорж Кювье (1769-1832) - французский естествоиспытатель, основатель сравнительной анатомии
  • Карл Линней (1707-1778) - шведский естесствоиспытатель, основатель современной классификации растений
  • Исаак Ньютон (1642-1727) - английский математик и физик
  • Блез Паскаль (1623-1662) - французский философ и математик
  • Франческо Реди (1626-1697) - итальянский зоолог и энциклопедист
  • Джон Рей (1623-1705) - английский ботаник и зоолог, основатель первого научно-естественноисторического общества

Новое время

  • Жан Луи Агассис (1807-1873) - швейцарский учёный, основоположник гляциологии, ихтиологии
  • Дэвид Брюстер (1781-1868) - английский физик, основатель оптической минералогии
  • Чарльз Бэббидж (1792-1871) - английский математик, автор проектов первой програмно-управляемой вычислительной машины
  • Рудольф Вирхов (1821-1902) - немецкий учёный в медицинской области, основатель клеточной патологии
  • Джозеф Генри (1797-1878) - американский физик
  • Джеймс Джоуль (1818-1889) - английский физик
  • Гемфри Дэви (1778-1829) - английский химик и физик, основатель термокинетики
  • лорд Кельвин (1824-1907) - англо-ирландский физик
  • Джеймс Клерк Максвелл (1831-1879) - шотландский физик
  • Грегор Мендель (1822-1884) - чешский натуралист, основоположник генетики
  • Мэтью Мори (1806-1873) - американский гидрограф
  • Луи Пастер (1822-1895) - французский естествоиспытатель, основатель современного учения о заразных болезнях
  • Бернхард Риман (1826-1866) - немецкий математик
  • Джеймс Симпсон (1811-1870) - шотландский акушер, гинеколог и хирург, изобретатель акупрессуры, первый применивший наркоз
  • Джордж Стокс (1819-1903) - англо-ирландский физик и математик
  • Майкл Фарадей (1791-1867) - английский физик

Креационисты новейшего времени

Проповедники, популяризаторы и апологеты

  • Генри Моррис (1918-2006) - американский проповедник и писатель, президент двух научных креационистских организаций
  • Доктор Грейди МакМётри - младоземельный креационист из США, основатель миссии Creation Worldview Ministries.
  • Джон Уиткомб - американский проповедник
  • Кент Ховинд (р.1953) - американский проповедник, ведущий семинаров, основатель парка «Страна приключений с динозаврами»
  • Эрик Ховинд - сын и последователь Кента Ховинда, ведущий семинаров
  • Чак Мисслер - инженер, автор фильма "Вопрос происхождения"

Учёные

  • Алтухов, Юрий Петрович - российский учёный-генетик, академик РАН (с 1997 г.), директор Института общей генетики, заслуженный профессор МГУ, член-корреспондент Академии Наук СССР с 1990 г.
  • Майкл Бихи (Michael Behe) - американский учёный, профессор биологических наук Университета Лихай в Пенсильвании, старший научный сотрудник Института Дискавери в Сиэттле; имеет учёную степень по биохимии.
  • Карл Бо (р.1936) - американский палеонтолог, телеведущий
  • Головин, Сергей Леонидович - магистр естественных наук (физика Земли), президент Христианского научно-апологетического центра в Крыму
  • Джонсон, Филлип (Phillip Johnson) - почётный профессор права Калифорнийского университета в Беркли.
  • Дембски, Уильям (William Dembski) - старший научный сотрудник Института Дискавери в Сиэттле, магистр богословия, имеет учёные степени по математике и философии.
  • Марк Истман - имеет степень доктора, автор книги "The Creator Beyond Time and Space"
  • Кеньон, Дин (Dean Kenyon) - почётный профессор биологии Университета штата Калифорния в Сан-Франциско, США. Соавтор книги "Биохимическая предопределённость" (о причинах правильного строения протеинов из аминокислот).
  • Макоско, Джед (Jed Macosko) - сотрудник Института Дискавери, имеет учёную степень по химии.
  • Мейер, Стефен (Stephen Meyer) - директор и старший научный сотрудник Центра возрождения науки и культуры при Институте Дискавери в Сиэттле, доктор наук.
  • Миннич, Скотт (Scott Minnich) - адъюнкт-профессор микробиологии Университета Айдахо и сотрудник Института Дискавери, имеет учёную степень по микробиологии.
  • Нельсон, Пол (Paul Nelson) - старший научный сотрудник Института Дискавери в Сиэттле, имеет учёную степень по философии.
  • Владислав Сергеевич Ольховский (р.1938) - украинский профессор в области ядерной физики, доктор физико-математических наук
  • Опарин, Алексей Анатольевич - врач-терапевт, доктор медицинских наук, профессор кафедры, автор книг по креационистской библейской археологии и истории христианства.
  • Паркер, Гарри - биолог
  • Сарфатти, Джонатан - австралийский учёный, кандидат наук по химии (физическая химия), спектроскопист. Известный шахматист.

Эволюционное учение Ж.Б. Ламарка.

Ж. Б. Ламарк (1744- 1829) - создатель первого эволюционного учения. Свои взгляды на историческое развитие органического мира он отразил в книге «Философия зоологии» (1809).

Ж. Б. Ламарк создал естественную систему животных, основанную на принципе родства между организмами. Занимаясь классификацией животных, Ламарк пришел к выводу, что виды не остаются постоянными, они медленно и непрерывно изменяются. Всех известных в то время животных по уровню их организации Ламарк разделил на 14 классов. В его системе, в отличие от системы Линнея, животные размещены в восходящем порядке - от инфузорий и полипов до высокоорганизованных существ (птицы и млекопитающие). Ламарк считал, что классификация должна отражать «порядок самой природы», то есть ее прогрессивное развитие. Все 14 классов животных Ламарк разделил на 6 градаций, или последовательных ступеней усложнения их организации:

I (1. Инфузории, 2. Полипы);

II (3. Лучистые, 4. Черви);

III (5. Насекомые, 6. Паукообразные);

IV (7. Ракообразные, 8. Кольчатые, 9. Усоногие, 10. Моллюски);

V (11. Рыбы, 12. Рептилии);

VI (13. Птицы, 14. Млекопитающие).

Усложнение животного мира носит по Ламарку ступенчатый характер и поэтому названо им градацией. В факте градации Ламарк увидел отражение хода исторического развития органического мира. Ламарк впервые в истории биологии сформулировал положение об эволюционном развитии живой природы: жизнь возникает путем самозарождения простейших живых тел из веществ неживой природы. Дальнейшее развитие идет по пути прогрессивного усложнения организмов, т. е. путем эволюции. В попытке найти движущие силы прогрессивной эволюции Ламарк пришел к произвольному выводу, что в природе существует некий изначальный закон внутреннего стремления организмов к совершенствованию Согласно этим представлениям, все живое, начиная с самозародившихся инфузорий, постоянно стремится к усложнению своей организации в длинном ряду поколений, что в конечном итоге приводит к превращению одних форм живых существ в другие (например, инфузории постепенно превращаются в полипов, полипы - в лучистых и т. д.).

Главным фактором изменчивости организмов Ламарк считал влияние внешней среды: изменяются условия (климат, пища), а вслед за этим из поколения в поколение изменяются и виды. У организмов, лишенных центральной нервной системы (растения, низшие животные), эти изменения возникают прямым путем. Так, например, у лютика жестколистного подводные листья сильно рассечены в виде нитей (прямое влияние водной среды), а надводные листья - лопастные (прямое влияние воздушной среды). У животных, имеющих центральную нервную систему, влияние среды на организм, по Ламарку, осуществляется косвенным путем: изменение в условиях жизни изменяет потребности животного, что вызывает изменение его действий, привычек и поведения. Вследствие этого, одни органы больше и чаще употребляются в работе (упражняются), а другие меньше и реже (не упражняются). При этом при упражнении органы развиваются (длинная шея и передние ноги у жирафа, широкие плавательные перепонки между пальцами у водоплавающих птиц, длинный язык у муравьеда и дятла и др.), а при неупражнении - недоразвиваются (недоразвитие глаз у крота, крыльев у страуса и др.). Этот механизм изменения органов Ламарк назвал законом упражнения и неупражнения органов.

В ламарковском толковании причин изменения видов в природе есть серьезные недостатки. Так.влиянием упражнения или неупражнении органов нельзя объяснить изменения таких признаков, как длина волосяного покрова, густота шерсти, жирность молока, окраска покровов животных, которые не могут упражняться. Кроме того, как теперь известно, не все изменения, возникающие у организмов под влиянием окружающей среды, наследуются.

Развитие сравнительной эмбриологии, работы К. Бера.

Как и многие другие естественные науки, эмбриология зародилась в античности. В трудах Аристотеля имеются довольно подробные описания развития куриного зародыша. В это же время возникли и две основные точки зрения на процессы развития - преформизм и эпигенез. Эти два взгляда на развитие полностью сформировались к XVII в., и между ними началась борьба. Тогда в связи с появлением микроскопа стали накапливаться фактические данные о строении зародышей и процессах развития разных организмов.

Становление эмбриологии как науки и систематизация фактического материала связаны с именем профессора Медико-хирургической академии К. Бэра. Он выявил, что в процессе эмбрионального развития раньше всего обнаруживаются общие типовые признаки, а затем появляются частные признаки класса, отряда, семейства и, в последнюю очередь, признаки рода и вида. Данное заключение было названо правилом Бэра. Согласно этому правилу, развитие организма происходит от общего к частному. К. Бэр указал на образование в эмбриогенезе двух зачатковых листков, описал хорду и др.

Карл Бэр показал, что развитие всех организмов начинается с яйцеклетки. При этом наблюдается следующие закономерности, общие для всех позвоночных: на ранних этапах развития обнаруживается поразительное сходство в строении зародышей животных, относящихся к разным классам (при этом эмбрион высшей формы похож не на взрослую животную форму, а на ее эмбрион); у зародышей каждой большой группы животных общие признаки образуются раньше, чем специальные; в процессе эмбрионального развития происходит расхождение признаков от более общих к специальным.

Карл Бэр в своих трудах по эмбриологии сформулировал закономерности, которые позднее были названы «Законами Бэра»:

Наиболее общие признаки любой крупной группы животных появляются у зародыша раньше, чем менее общие признаки;

После формирования самых общих признаков появляются менее общие и так до появления особых признаков, свойственных данной группе;

Зародыш любого вида животных по мере развития становится все менее похожим назародышей других видов и не проходит через поздние стадии их развития;

Зародыш высокоорганизованного вида может обладать сходством с зародышем более примитивного вида, но никогда не бывает похож на взрослую форму этого вида.

Элиминация, ее формы. Примеры.

В биологии элиминация - это смерть некоторых особей, организмов или их групп, популяций, видов вследствие разных естественных причин, то есть влияния факторов внешней среды. Чаще всего эти особи не приспособлены к процессу борьбы за сущ-ие, яв-ся самыми слабыми среди остальных. Сама гибель представителей того или иного вида бывает физической, когда смерть наступает вследствие воздействия экологии, а также генетической, когда изменяется генотип, что ведёт к снижению числа потомков и их жизнеспособности, к уменьшению их вклада в генофонд следующего поколения. Различают Э. неизбирательную (общую) и избирательную. Неизбирательная Э. возникаетпри воздействии на популяцию факторов среды, превосходящем адаптивные возможности данной группы особей (популяции, вида), обычно стихийных бедствий и катастрофических антропогенных вмешательств(наводнения, засухи, изменение характера ландшафта).Массовая Э. может приводить к полному вымиранию вида. Ведущее значение в эволюции имеет избирательная Э. гибель части особей популяции, обусловленная их более низкой относительной приспособленностью. Только избирательная Э. приводит к дифференцированному выживанию и размножению более приспособленных особей, т. е. к естественному отбору.

Современное понимание борьбы за существование. Формы взаимоотношений между организмами. Примеры.

Современное понимание естественного отбора. Форма отбора. Примеры.

В современном понимании естественный отбор - это избирательное (дифференциальное) воспроизведение генотипов, или дифференциальное размножение. Дифференциальное размножение представляет собой конечный результат многочисленных процессов: выживания гамет, успеха в оплодотворении, выживаемости зигот, эмбрионов, рождения, выживаемости в молодом возрасте и в период половой зрелости, стремления к спариванию, успешности спаривания, плодовитости. Различия в этих процессах есть следствие различий в признаках и свойствах, различия в генетической программе.Объекты отбора: отдельные особи, семьи, популяции, группы популяций, виды, сообщества, экосистемы.Сфера действия естественного отбора: ЕО затрагивает все признаки особи. Отбор идет по фенотипам - результатам реализации генотипа в процессе онтогенеза в конкретных условиях среды, т. е. отбор действует лишь косвенно на генотипы. Поле действия естественного отбора - популяции. Точка приложения естественного отбора - признак или свойство.ЕО имеет две стороны: дифференциальную (избирательную) выживаемость и дифференциальную смертность, то есть естественный отбор имеет положительную и отрицательную стороны. Отриц. сторона ЕО - элиминация. Положительная сторона - сохранение фенотипов наиболее соответствующих условиям экосистемы в данный момент. ЕО увеличивает частоту этих фенотипов, а значит - и частоту генов, формирующих эти фенотипы. Механизм естественного отбора 1. Изменения генотипов в популяции многообразны, они затрагивают любые признаки и свойства организмов. 2. Среди множества изменений случайно возникают и такие, которые лучше соответствуют конкретным природным условиям в данное время. 3. Обладатели этих полезных признаков оставляют больше выживающих и размножающихся потомков по сравнению с остальными особями популяции. 4. Из поколения в поколение полезные изменения суммируются, накапливаются, комбинируются и превращаются в адаптации - приспособления. Формы естественного отбора. ЕО в процессе эволюции принимает различные формы. Можно выделить три основных формы: стабилизирующий отбор, движущий отбор и дизруптивный отбор. Стабилизирующий отбор - форма ЕО, направленная на поддержание и повышение устойчивости реализации в популяции среднего, ранее сложившегося признака или свойства. При стабилизирующем отборе преимущество в размножении получают особи со средним выражением признака (по образному выражению, это «выживание заурядностей»). Эта форма отбора как бы охраняет и усиливает новый признак, устраняя от размножения все особи, фенотипически заметно уклоняющиеся в ту или другую сторону от сложившейся нормы. Пример: после снегопада и сильных ветров было найдено 136 оглушенных и полуживых воробьев; 72 из них выжили, а 64 погибли. У погибших птиц были очень длинные или очень короткие крылья. Особи же со средними - «нормальными» крыльями оказались более выносливыми. Стабилизирующий отбор в течение миллионов поколений оберегает сложившиеся виды от существенных изменений, от разрушающего действия мутационного процесса, выбраковывая уклонения от приспособительной нормы. Эта форма отбора действиует до тех пор, пока не изменяются существенно условия жизни, в которых выработаны данные признаки или свойства вида. Движущий (направленный) отбор - отбор, способствующий сдвигу среднего значения признака или свойства. Такой отбор способствует закреплению новой нормы взамен старой, пришедшей в несоответствие с изменившимися условиями. Результатом такого отбора является, например, утрата некоторого признака. Так в условиях функциональной непригодности органа или его части естественный отбор способствует их редукции, т.е. уменьшению, исчезновению. Пример: утрата пальцев у копытных, глаз у пещерных животных, конечностей у змей и т.п. Материал же для действия такого отбора поставляется разного рода мутациями. Дизруптивный (разрывающий) отбор - форма отбора, благоприятствующая более чем одному фенотипу и действующая против средних, промежуточных форм. Эта форма отбора проявляется в тех случаях, когда ни одна из групп генотипов не получает абсолютного преимущества в борьбе за существование из-за разнообразия условий, одновременно встречающихся на одной территории. В одних условиях отбирается одно качество признака, в других - другое. Дизруптивный отбор направлен против особей со средним, промежуточным характером признаков и ведет к установлению полиморфизма, т.е. множества форм в пределах одной популяции, которая как бы «разрывается» на части. Пример: В лесах, где почвы коричневого цвета особи земляной улитки чаще имеют коричневую и розовую окраску раковин, на участках с грубой и желтой травой преобладает желтая окраска и т.п. .

Аналогичные и гомологичные органы. Примеры.

Аналогичные органы - это органы, разные по происхождению, имеющие внешнее сходство и выполняющие сходные функции. Аналогичными есть жабры речного рака, головастика и жабры личинок стрекоз. Спинной плавник касатки (китообразные млекопитающие) аналогичен спинному плавнику акулы. Аналогичны бивни слона (разросшиеся резцы) и бивни моржа (гипертрофированные клыки), крылья насекомых и птиц, колючки кактусов (видоизмененные листья) и колючки барбариса (видоизмененные побеги), а также шипы шиповника (выросты кожицы).

Аналогичные органы возникают у далеких организмов вследствие приспособлений их к одинаковым условиям среды или выполнения органами одинаковой функции

Гомологичные органы - органы, сходные по происхождению, строению, расположению в организме. Конечности всех наземных позвоночных гомологичны, потому что они отвечают критериям гомологичности: имеют общий план строения, занимают сходное положение среди других органов, развиваются в онтогенезе из сходных эмбриональных зачатков. Гомологичны ногти, когти, копыта. Ядовитые железы змей гомологичны слюнным железам. Молочные железы - гомологи потовых желез. Усики гороха, иглы кактуса, иглы барбариса - гомологи, все они - видоизменение листьев.

Сходство в плане строения гомологичных органов есть следствие общности происхождения. Существование гомологичных структур есть следствие существования гомологичных генов. Различия возникают вследствие изменения функционирования этих генов под действием эволюционных факторов, а также вследствие ретардаций, акце-лераций и других изменений эмбриогенеза, ведущих к дивергенции форм и функций.

Рудименты и атавизмы. Примеры.

Рудиментами принято называть органы или их части, что не функционируют в организме человека и, в принципе, являются лишними, иногда они могут выполнять какие-то второстепенные функции, но в любом случае, их первоначальное значение было утрачено в ходе эволюционного развития;

Атавизмы – это возникающие у человека признаки, которые были свойственны его дальним предкам, появление оных в наше время объясняется тем, что в любом человеческом ДНК заложены гены, отвечающие за этот признак, однако они подавляются другими и не функционируют. Генетический сбой на каком-то из уровней развития способствует проявлению этих генов, что и выливается в какое-то непривычное для современного человека свойство.

Примеры рудиментов человека:

Классическим примером человеческого рудимента можно назвать ушные мышцы.

Это передняя, верхняя, височно-теменная и задняя ушная мышцы, которые обеспечивает движение ушной раковины в разные стороны.

Как известно, в современном мире человеку нет надобности в шевелящихся ушах, и, тем не менее, эта возможность есть, причём у отдельных людей она выражена особенно ярко.

Примеры рудиментов: зуб мудростиРудиментами человека являются также зубы мудрости.

Форма коронки такого зуба говорит о том, что в далёком прошлом люди употребляли в пищу большое количество твёрдой и жёсткой еды, для чего и нужны были эти зубы.

На сегодня у нас совершенно другой рацион питания, а посему нужда в таких зубах отпала.

К слову, у людей из последних поколений, достигших тридцатилетнего возраста, зубы мудрости стали прорезаться всё реже и реже, что и подтверждает эту гипотезу.

К рудиментам человек можно отнести и червеобразный отросток, также именуемый аппендиксом.

Однако, утратив свою первоначальную функцию (пищеварительную), он продолжает выполнять второстепенные, а именно: защитную, секреторную и гормональную.

Но, несмотря на немаловажную роль в организме, многие считают его абсолютно бесполезным органом, что в корне неверно.

Ещё одним примером рудиментарного органа, который продолжает использовать наше тело - копчик (сросшиеся позвонки нижнего отдела позвоночника представляет собой рудиментарный хвост).

В наше время он служит для прикрепления мышц и связок, которые задействованы в функционировании органов половой системы.

Как видите, примеров рудиментов в нашем теле огромное количество.

Примеры атавизмов человека:

Примеры атавизмов и рудиментов Проявлением атавизма считается повышенный волосяной покров на человеческом теле.

Редко, но встречались такие случаи, что тело человека было более чем на 95 процентов покрыто густой шерстью, как у примата, незатронутыми остались лишь ступни ног и ладони.

Это отсылает нас назад, к общему предку человека и обезьяны.

Также нередко встречались случаи образования лишней пары молочных желез или сосков (как у мужчин, так и у женщин), развитие у человека хвостовидного придатка.

Причём последний случай отчётливо виден уже на первых снимках УЗИ.

Микроцефалия фотоНекоторые учёные относят к атавизму и микроцефалию – это уменьшение размеров черепа и головного мозга при нормальных пропорциях тела.

Как правило, у таких людей выражается умственная недостаточность. И всё же, стоит ли относить эту патологию к атавизмам – вопрос спорный и однозначного ответа не имеет.

24. Теория филембриогенеза А.Н. Северцова. Виды филэмбриогенеза. Значение для эволюции. Одна из главных задач эволюционной теории заключалась в выяснении того, каким образом изменения отдельных организмов становятся признаками вида и более крупных таксонов, иначе говоря, каким образом онтогенетические преобразования соотносятся с филогенетическими. Согласно биогенетическому закону Э. Геккеля онтогенез есть быстрое и сжатое повторение филогенеза(рекапитуляция). Северцов пересмотрел в общем статичную геккелевскую схему рекапитуляции и выдвинул положение о том, что онтогенез не просто копирует филогенез, но что в процессе эволюции изменениям подвергаются все стадии онтогенеза, и, соответственно, происходят филогенетические преобразования (филэмбриогенезы). На ранних стадиях эмбрионального развития появляются крупные эволюционные новшества (архаллаксисы), на более поздних - изменения меньшего масштаба (девиации), на конечных стадиях - преобразования еще более мелкого ранга. Может также происходить удлинение онтогенеза путем надставки стадий (анаболии). Наглядной иллюстрацией северцовской теории филэмбриогенезов является происхождение и эволюция многоклеточных животных. По мнению ученого, у одноклеточных организмов онтогенез как таковой отсутствует, он появляется у их многоклеточных потомков, которые в начале развиваются посредством анаболий, а затем - путем изменений первичных зачатков на основе архаллаксисов и девиаций. В рамках теории филэмбриогенезов разрабатывалось учение о корреляции органов, их редукции и другие вопросы эволюционной филогенетики.

Креационизм. Основные идеи. Представители (К. Линней, Кювье).

Креационизм- направление в биологии, объясняющее происхождение мира актом божественного творения и отрицание изменяемости видов в их историческом развитии. Формирование К-ма в биологии связано с кон. 18 - нач. 19 вв. Сторонники идеи постоянства видов (К. Линней, Ж. Кювье, Ч. Лайель).

Однако ив период господства метафизики и креационизма в биологии отдельные естествоиспытатели фиксировали внимание на фактах изменчивости, превращения форм растений и животных. Зарождалось и развивалось течение, известное под названием трансформизма. Трансформизм, подрывавший устои метафизики и креационизма, считают предшественником эволюционного учения.

Одной из главных заслуг Линнея стало определение понятия биологического вида, внедрение в активное употребление биноминальной (бинарной) номенклатуры и установление чёткого соподчинения между систематическими (таксономическими) категориями. Он составил описания около 7.500 видов Р и 4.000 видов Ж. Разработал свод ботан. терминов. Но самое главное, он построил четкую систему растений, состоявшую из 24 классов, позволявшую быстро и точно определить их виды.За основу классификации принял вид, растения разделил на соподчиненные таксономические группы, отряды, роды, виды. За основу классификации растений взял строение половой системы.

Животных разделил на 6 кл. по строению кровеносной системы.млекопитающие, птицы, гады (земноводные и пресмыкающиеся), рыбы, насекомые и черви (к червям отнес губок).

Достоинства системы Линнея:

1.Рассматривал вид, как реальносуществующую единицу живой природы

2.Ввел бинарное название вида.

3.Человека отнес к млекопитающим отряд приматы,отнес китообразных к млекопитающим.

Наиболее ярким выразителем и защитником креационистской доктрины был Ж. Кювье. Ж. Кювье - франц естествоиспытатель, натуралист. Считается основателем сравнительной анатомии и палеонтологии. Был членом Французского Географического общества.

Согласно его воззрениям, любое живое существо представляет собой замкнутую статическую систему, отвечающую двум основным принципам – соотношения и условий существования. Т.е все органы и системы организма взаимно связаны и взаимно обусловлены и все они созданы для определенной цели, осуществляемой через их функции, а организм устроен так, что его органы скоррелированы друг с другом и заранее приспособлены к жизни в определенных условиях существования. Организмы могут погибнуть, если изменятся условия, целые фауны и флоры могут навсегда исчезнуть с лица Земли, но они не могут измениться. Эта концепция носила явно выраженный креоционистский характер (мир создан творцом и не изменяем).

В поисках согласования этой концепции с накопившимися к началу XIX в. палеонтологическими данными, свидетельствовавшими о том, что животный мир на протяжении геологического времени изменялся, Кювье в 1812 г. развил теорию катастроф.

Он объяснял эти катастрофы так: на сушу надвигалось море и поглощало все живое, затем море отступало, морское дно становилось сушей, которая и заселялась новыми Ж., которые переселялись из далеких мест, где они жили раньше.

Теория катастроф получила широкое распространение. Однако целый ряд ученых выражали свое критическое отношение к ней. Бурным спорам между приверженцами неизменности видов и сторонниками стихийного эволюционизма положила конец глубоко продуманная и фундаментально обоснованная теория образования видов, созданная Ч. Дарвином и А. Уоллесом.

2. Трансформизм. Основные идеи. Представители (Сент-Илер, Бюффон, Ломоносов). Сент-Илерфранц зоолог, член Института Франции, предшественник британского эволюциониста Ч. Дарвина. Сент-Илер первым высказал мысль о необходимости различать органы по их строению и действию; частично предвидел биогенетический закон, согласно которому некоторые этапы эволюционного развития и изменения органов появляются и проходят в известное время в период развития зародыша, как бы свидетельствуя о развитии органов у предшественников. Ученый одним из первых высказал мысль о большом значении эмбриологии в деле морфологически-сравнительного исследования.На основе сравнительно-анатомических доказательств единства строения организмов внутри отдельных классов позвоночных Жив-ых С.-И. предпринял поиски морфологического единства животных разных классов, использовав метод сравнительного изучения зародышей. Учение Ж. С. о едином плане организации всех типов животного мира подвергалось жестоким нападкам ученых сторонников неизменяемости вида. Отстаивая учение о единстве животного мира, Ж. С. подверг резкой критике как теорию Кювье о 4 изолированных типах строения животного мира, лишённых общности в организации и переходов.несмотря на жестокие нападки реакционных кругов, выступил с прямой защитой эволюционной идеи. Для обоснования своих взглядов С.- И привлек обширный материал из разных биологических наук(эмбриологии, палеонтологии, сравнительной анатомии, систематики).С.-И. создал учение об уродствах как естественных явлениях природы, Положил начало экспериментальной тератологии, получив в опытах на куриных эмбрионах ряд искусственных уродств. Создал науку об акклиматизации животных.Трансформисты выступали против метафизического представления о постоянстве видов и против креационистской "теории творения". Они доказывали естественное происхождение органического мира. Однако трансформизм - это еще не эволюционное учение. Он утверждает лишь превращение, трансформацию видов, не поднимаясь до последовательного понимания развития как исторического процесса. Среди прогрессивных естествоиспытателей XVIII в. особое место занимает Ж. Бюффон (1707-1788) - разносторонний и плодотворный ученый, который много внимания уделял разработке трансформистских идей. В распоряжении Бюффона были богатейшие коллекции животных, которые все время пополнялись новыми экспонатами, доставляемыми из всех стран света. Материалистические взгляды Бюффона привели его к представлению о естественном происхождении животных и растений. Более того, он пытался создать общую картину происхождения Земли. По его представлению, Земля откололась от Солнца в виде огненного жидкого шара. Вращаясь в мировом пространстве, она постепенно остывала. Жизнь на Земле появилась в тот период, когда всю поверхность Земли покрыл мировой океан. Кто же были первые обитатели моря? По мнению Бюффона, это были моллюски и рыбы, т. е. сложные организмы. Они возникли внезапно, непосредственно из живых частиц материи, находившихся в океане. При дальнейшем охлаждении Земли в связи с деятельностью вулканов возникла суша. Климат Земли был жарким, и первыми обитателями суши были возникшие из морских организмов тропические животные, подобные современным слонам, копытным и хищникам. Так, по мнению Бюффона, возникло относительно небольшое число главных семейств, от которых путем превращения произошли все остальные животные.Бюффон считал, что главной причиной изменчивости и "перерождения" животных были такие факторы, как климат, пища, а также гибридизация. По мере расселения животных по земному шару они попадали в разные условия среды и, изменяясь, образовали весь тот многообразный животный мир, который существует в наше время. Взгляды Бюффона были передовыми для его времени.Материалистические традиции сложились в русской науке в XVIII веке под влиянием философских идей М. В. Ломоносова. Ломоносов был последовательным материалистом. Главный вклад Ломоносова в естествознание был связан с развитием физики, химии и геологии. Ломоносов впервые выдвинул идею развития для объяснения процессов горообразования, возникновения слоистых пород, торфа, каменного угля. Факторами, вызывающими геологические процессы, он считал размывание, выветривание и вулканическую деятельность. Изучая слои земли, Ломоносов встретился с остатками вымерших животных и в отличие от большинства ученых своего времени увидел в них не "игру природы", а окаменевшие остатки организмов.

3. Преформизм.основные идеи. Представители. Теория эпигенеза. Вопрос об индивидуальном развитии - онтогенезе - привлекал к себе внимание со времен Аристотеля. Благодаря усилиям многих исследователей к XVII в. был накоплен обширный материал по изменениям, происходящим с зародышами позвоночных на макроуровне. Появление в XVII столетии микроскопа перевело эмбриологию на качественно новый уровень, хотя несовершенство первых микроскопов и крайне примитивная техника изготовления микропрепаратов делали практически недоступными для изучения ранние стадии развития зародышей. В XVII-XVIII вв. оформились два взгляда на онтогенез - преформизм и эпигенез. Сторонники преформизма полагали, что зародышевое развитие сводится к росту вполне сформированного зародыша. Предполагалось, что зародыш - уменьшенный вариант сложноустроенного взрослого организма - существовал в такой форме с момента творения. Преформисты, в свою очередь, разделились на две группы. Овисты - Я. Сваммердам, А. Валлиснери, М. Мальпиги, Ш. Бонне, А. Галлер, Л. Спаланзани и др считали, что уже сформированный зародыш находится в яйцеклетке, а мужское половое начало лишь дает толчок кразвитию.Анималькулисты А. Левенгук, Н. Хартсекер, И.Н. Либеркюн и др. утверждали, что зародыш заключен в сперматозоиде, который развивается за счет питательных веществ яйца. А. Левенгук допускал существование мужских и женских сперматозоидов. Крайним выражением преформизма явилась теория вложений. Согласно ей, половые клетки зародышей, как матрешки, уже несут в себе зародышей следующего поколения, в тех содержатся зародыши последующих поколений, и так далее.Воззрения преформистов базировались на некоторых фактических данных. Так, Я. Сваммердам, вскрыв куколку бабочки, обнаружил там вполне сформированное насекомое. Ученый воспринял это как доказательство того, что более поздние стадии развития спрятаны в более ранних и до поры до времени не видны. Сходство детей с обоими родителями преформисты объясняли тем, что зародыш, происшедший из яйца или из семенного анималькуля, формируется по образу и подобию своих родителей под влиянием воображения матери в течение утробной жизни. Впрочем, некоторые сторонники этой концепции допускали, что вложенные зародыши не обязательно идентичны друг с другом, вплоть до того, что и сам прогресс живых форм мог быть преформирован в момент творения.Приверженцы альтернативного течения - эпигенетики - считали, что в процессе онтогенеза происходит новообразование структур и органов зародыша из бесструктурного вещества.Впервые идея эпигенеза встречается в труде В. Гарвея Исследования о нарождении животных 1651 г но в полной мере соответствующие взгляды были выражены К.Ф. Вольфом 1733-1794 . К.Ф. Вольф исходил из того, что, если правы преформисты, то все органы зародыша, как только мы их можем увидеть, должны быть полностью сформированы. В своей работе Теория зарождения 1759 г. ученый описывает картины постепенного возникновения различных органов из неорганизованной массы у животных и растений. К сожалению, К.Ф. Вольф работал с довольно плохим микроскопом, что породило многие фактические неточности, но это не умаляет значения созданной им теории эпигенеза.Эпигенетической точки зрения в XVIII в. придерживались П. Мопертюи, Дж. Нидхэм, Д. Дидро, отчасти Ж. Бюффон. Решающий перелом в споре между представителями двух течений произошел в XIX в. после работ К.М. Бэра 1792-1876 , сумевшего снять альтернативу - или преформизм, или эпигенез.К.М. Бэр считал, что нигде в зародыше не происходит новообразований, имеют место лишь преобразования. При этом преобразование К.М. Бэр понимал отнюдь не в духе преформизма, а рассматривал его как подлинное развитие, с глубокими качественными преобразованиями от более простого и недифференцированного к более сложному и дифференцированному.

Креационизм (от англ. creation - создание) - философско-методологическая концепция, в рамках которой основные формы органического мира (жизнь), человечество, планета Земля, а также мир в целом, рассматриваются как намеренно созданные неким сверхсуществом или божеством. Последователи креационизма разрабатывают совокупность идей - от сугубо богословских и философских до претендующих на научность, хотя в целом современное научное сообщество относится к таким идеям критически.

Наиболее известна библейская версия, согласно которой человек сотворен единым Богом. Так, в христианстве Бог создал первого человека на шестой день творения по образу и подобию своему, чтобы владел он всей землей. Создав Адама из праха земного, Бог вдохнул в него дыхание жизни. Позднее из ребра Адама была создана первая женщина - Ева. Эта версия имеет более древние египетские корни и ряд аналогов в мифах других народов. Религиозная концепция происхождения человека носит ненаучный, мифологический характер и поэтому во многом не устраивала ученых. Выдвигаются различные доказательства этой теории, важнейшее из которых - сходство мифов и легенд разных народов, повествующих о сотворении человека. Теории креационизма придерживаются последователи почти всех наиболее распространенных религиозных учений (особенно христиане, мусульмане, иудеи).

Креационисты в большинстве своем отвергают эволюцию, приводя при этом неоспоримые факты в свою пользу. К примеру, сообщается о том, что эксперты по вычислительной технике зашли в тупик в попытке воспроизвести человеческое зрение. Они вынуждены были признать, что невозможно искусственным путем воспроизвести человеческий глаз, в особенности сетчатку с ее 100 миллионами палочек и колбочек, а также нейронные слои, выполняющие, по меньшей мере, 10 миллиардов вычислительных операций в секунду. Даже Дарвин признавал: «Предположение, чтобы глаз… мог быть выработан естественным отбором, может показаться, сознаюсь в том откровенно, в высшей степени нелепым».

1) Процесс возникновения Вселенной и зарождения жизни на Земле

Креационная модель выделяет особый, начальный момент творения, когда важнейшие неживые и живые системы были созданы в законченном и совершенном виде.

2) Движущие силы

Креационная модель, исходя из того, что естественные процессы в настоящее время не создают жизни, не осуществляют формообразования видов и их совершенствования, креационисты утверждают, что все живое было создано сверхъестественным образом. Это предполагает наличие во Вселенной Высшего Разума, способного замыслить и воплотить все ныне существующее.

3) Движущие силы и их проявление в настоящее время

Креационная модель, после завершения акта творения процессы творения уступили место процессам сохранения, поддерживающим Вселенную и обеспечивающим выполнение ею некоего предназначения. Поэтому в окружающем мире мы не можем больше наблюдать процессов творения и совершенствования.

4) Отношение к существующему миропорядку

Креационная модель представляет мир в уже созданном, завершенном виде. Так как порядок был изначально совершенным, то улучшаться он уже не может, а должен с течением времени терять свое совершенство.

5) Факторы времени

Креационная модель, мир был создан в непостижимо короткое время. В силу этого креационисты оперируют несравнимо меньшими цифрами в определении возраста Земли и жизни на ней.

В последние годы делаются попытки научного доказательства того, что описано в Библии. Примером здесь могут послужить две книги, написанные известным физиком Дж. Шредером, в которых он утверждает, что библейский рассказ и данные науки не противоречат друг другу. Одной из важных задач Шредера было согласование библейского рассказа о сотворении мира за шесть дней - с научными фактами о существовании Вселенной в течение 15 миллиардов лет.

Поэтому, признавая все же ограниченные возможности науки вообще в выяснении проблем человеческой жизни, надо с должным пониманием относиться к тому, что целый ряд выдающихся ученых (среди них - лауреаты Нобелевской премии) признают существование Творца, как всего окружающего мира, так и разнообразных форм жизни на нашей планете.

Креационизм - концепция постоянства видов, рас­сматривающая многообразие органического мира как ре­зультат сотворения богом.
Формирование креационизма в биологии связано с переходом в конце XVIII - начале XIX века к систематическому изучению морфологии, фи­зиологии, индивидуального развития и размножения орга­низмов, положившему конец представлениям о внезапных превращениях видов и возникновении сложных организ­мов в результате случайного сочетания отдельных органов. Сторонники идеи постоянства видов (К.Линней, Ж.Кювье, Ч.Лайель) доказывали, что виды реально существуют, что они устойчивы, а размах их изменчивости под влиянием внутренних и внешних факторов имеет строгие пределы. Линней утверждал, что видов существует столько, сколько их было создано во время «творения мира». Стремясь снять противоречие между данными об устойчивости современ­ных видов и данными палеонтологии, Кювье создал теорию катастроф. Последователи Кювье придавали этой теории откровенно креационистский характер и насчитывали де­сятки периодов полного обновления органического мира Земли в результате деятельности творца.
Благодаря широкому и быстрому признанию дарви­низма, уже с середины 60-х годов ХIX века креационизм утратил свое значение в биологии и сохранился главным образом в философских и религиозных доктринах. В последарвиновский период креационизм претерпел опреде­ленные изменения. Были предприняты попытки объеди­нить идею эволюции с религиозными идеями о создании мира. При этом не оспаривалось происхождение человека от обезьяноподобных предков, но сознание и духовная деятельность человека рассматривались как результат бо­жественного творения. Сторонники научного креациониз­ма утверждают, что теория эволюции - лишь одно из возможных объяснений существования органического мира, не имеющее фактического обоснования и поэтому сходное с религиозными концепциями.

Теория креационизма предполагает, что все живые организмы (либо только простейшие их формы) были в определенный период времени сотворены («сконструированы») неким сверхъестественным существом (божеством, абсолютной идеей, сверхразумом, сверхцивилизацией и т.п.). Очевидно, что именно этой точки зрения с глубокой древности придерживались последователи большинства ведущих религий мира, в частности христианской религии.Теория креационизма и в настоящее время достаточно широко распространена, причем не только в религиозных, но и в научных кругах. Обычно ее используют для объяснения наиболее сложных, не имеющих на сегодняшний день решения вопросов биохимической и биологической эволюции, связанных с возникновением белков и нуклеиновых кислот, формированием механизма взаимодействия между ними, возникновением и формированием отдельных сложных органелл или органов (таких, как рибосома, глаз или мозг). Актами периодическою «сотворения» объясняется и отсутствие четких переходных звеньев от одного типа животных к другому, например от червей к членистоногим, от обезьяны к человеку и т.п. Необходимо подчеркнуть, что философский спор о первичности сознания (сверхразума, абсолютной идеи, божества) либо материи принципиально не разрешим, однако, поскольку попытка объяснить любые трудности современной биохимии и эволюционной теории принципиально непостижимыми сверхъестественными актами творения выводит эти вопросы за рамки научных исследований, теорию креационизма нельзя отнести к разряду научных теорий происхождения жизни на Земле.

Теория творения (креационизм)

Креационизм -- философско-методологическая концепция, в рамках которой основные формы органического мира (жизнь), человечество, планета Земля, а также мир в целом, рассматриваются как намеренно созданные неким сверхсуществом или божеством. Последователи креационизма разрабатывают совокупность идей -- от сугубо богословских и философских до претендующих на научность, хотя в целом современное научное сообщество относится к таким идеям критически.

Наиболее известна библейская версия, согласно которой человек сотворен единым Богом. Так, в христианстве Бог создал первого человека на шестой день творения по образу и подобию своему, чтобы владел он всей землей. Создав Адама из праха земного, Бог вдохнул в него дыхание жизни. Позднее из ребра Адама была создана первая женщина -- Ева.

Эта версия имеет более древние египетские корни и ряд аналогов в мифах других народов. Религиозная концепция происхождения человека носит ненаучный, мифологический характер и поэтому во многом не устраивала ученых. Выдвигаются различные доказательства этой теории, важнейшее из которых -- сходство мифов и легенд разных народов, повествующих о сотворении человека. Теории креационизма придерживаются последователи почти всех наиболее распространенных религиозных учений (особенно христиане, мусульмане, иудеи). Креационисты в большинстве своем отвергают эволюцию, приводя при этом неоспоримые факты в свою пользу.

К примеру, сообщается о том, что эксперты по вычислительной технике зашли в тупик в попытке воспроизвести человеческое зрение. Они вынуждены были признать, что невозможно искусственным путем воспроизвести человеческий глаз, в особенности сетчатку с ее 100 миллионами палочек и колбочек, а также нейронные слои, выполняющие, по меньшей мере, 10 миллиардов вычислительных операций в секунду. Даже Дарвин признавал: «Предположение, чтобы глаз… мог быть выработан естественным отбором, может показаться, сознаюсь в том откровенно, в высшей степени нелепым». Если эволюционная модель основана на принципе постепенной изменчивости и полагает, что жизнь на Земле достигла сложного и высокоорганизованного состояния в процессе естественного развития, то креационная модель выделяет особый, начальный момент творения, когда важнейшие неживые и живые системы были созданы в законченном и совершенном виде. Если эволюционная модель утверждает, что движущими силами являются неизменные законы природы. Благодаря этим законам осуществляется генезис и совершенствование всего живого.

Сюда же эволюционисты относят законы биологического отбора, основывающиеся на борьбе видов за выживание, то креационная модель, исходя из того, что естественные процессы в настоящее время не создают жизни, не осуществляют формообразования видов и их совершенствования, креационисты утверждают, что все живое было создано сверхъестественным образом.

Это предполагает наличие во Вселенной Высшего Разума, способного замыслить и воплотить все ныне существующее. В то время как эволюционная модель гласит, что в силу неизменности и поступательности движущих сил, естественные законы, создавшие все живое, действуют и сегодня. Будучи производной, их действия, эволюция происходит и поныне, то креационная модель, после завершения акта творения процессы творения уступили место процессам сохранения, поддерживающим Вселенную и обеспечивающим выполнение ею некоего предназначения. Поэтому в окружающем мире мы не можем больше наблюдать процессов творения и совершенствования.

Эволюционная модель, ныне существующий мир изначально находился в состоянии хаоса и беспорядка. С течением времени и благодаря действию естественных законов он становится все более организованным и сложным. Процессы, свидетельствующие о постоянном упорядочении мира, должны происходить и в настоящее время, а креационная модель представляет мир в уже созданном, завершенном виде. Так как порядок был изначально совершенным, то улучшаться он уже не может, а должен с течением времени терять свое совершенство.

Эволюционная модель, чтобы привести Вселенную и жизнь на Земле в современное сложное состояние посредством природных процессов, необходимо достаточно длительное время, поэтому возраст Вселенной определяется эволюционистами в 13,7 миллиарда лет, а возраст Земли - в 4,6 миллиарда лет, а креационная модель, мир был создан в непостижимо короткое время. В силу этого креационисты оперируют несравнимо меньшими цифрами в определении возраста Земли и жизни на ней.

В последние годы делаются попытки научного доказательства того, что описано в Библии. Примером здесь могут послужить две книги, написанные известным физиком Дж. Шредером, в которых он утверждает, что библейский рассказ и данные науки не противоречат друг другу. Одной из важных задач Шредера было согласование библейского рассказа о сотворении мира за шесть дней -- с научными фактами о существовании Вселенной в течение 15 миллиардов лет. Поэтому, признавая все же ограниченные возможности науки вообще в выяснении проблем человеческой жизни, надо с должным пониманием относиться к тому, что целый ряд выдающихся ученых (среди них -- лауреаты Нобелевской премии) признают существование Творца, как всего окружающего мира, так и разнообразных форм жизни на нашей планете.

Гипотеза творения не может быть ни доказана, ни опровергнута и будет существовать всегда вместе с научными гипотезами происхождения жизни. Креационизм мыслится как Божье Творение. Однако в настоящее время некоторые рассматривают его и как результат деятельности высокоразвитой цивилизации, создающей различные формы жизни и наблюдающей за их развитием.

Вопрос происхождения жизни на Земле — один из самых сложных вопросов современного естествознания, на который до настоящего времени нет однозначного ответа.

Существует несколько теорий происхождения жизни на Земле, наиболее известные из которых:

  • теория самопроизвольного (спонтанного) зарождения;
  • теория креационизма (или сотворения);
  • теория стационарного состояния;
  • теория панспермии;
  • теория биохимической эволюции (теория А.И. Опарина).

Рассмотрим основные положения этих теорий.

Теория самопроизвольного (спонтанного) зарождения

Теория самопроизвольного зарождения жизни была широко распространена в Древнем мире — Вавилоне, Китае, Древнем Египте и Древней Греции (этой теории придерживался, в частности, Аристотель).

Ученые Древнего мира и средневековой Европы верили в то, что живые существа постоянно возникают из неживой материи: черви — из грязи, лягушки — из тины, светлячки — из утренней росы и т.п. Так, известный голландский ученый 17 в. Ван-Гельмонт совершенно серьезно описывал в своем научном трактате опыт, в котором он за 3 недели получил в запертом темном шкафу мышей непосредственно из грязной рубашки и горсти пшеницы. Впервые широко распространенную теорию решился подвергнуть экспериментальной проверке итальянский ученый Франческо Реди (1688). Он поместил несколько кусков мяса в сосуды и часть из них закрыл кисеей. В открытых сосудах на поверхности гниющего мяса появились белые червячки — личинки мух. В сосудах же, прикрытых кисеей, личинки мух отсутствовали. Таким образом Ф. Реди удалось доказать, что личинки мух появляются не из гниющего мяса, а из яиц, отложенных мухами на его поверхность.

В 1765 г. известный итальянский ученый и врач Ладзаро Спаланцани прокипятил в запаянных стеклянных колбах мясные и овощные бульоны. Бульоны в запаянных колбах не портились. Он сделал вывод, что под действием высокой температуры погибли все живые существа, способные вызывать порчу бульона. Однако опыты Ф. Реди и Л. Спаланцани убедили далеко не всех. Ученые-виталисты (от лат.vita - жизнь) считали, что в прокипяченном бульоне не происходит самозарождения живых существ, так как в нем разрушается особая «жизненная сила», которая не может проникнуть в запаянный сосуд, поскольку переносится по воздуху.

Споры но поводу возможности самозарождения жизни активизировались в связи с открытием микроорганизмов. Если сложные живые существа не могут самозарождаться, возможно, это могут микроорганизмы?

В связи с этим в 1859 г. французская Академия объявила о присуждении премии тому, кто окончательно решит вопрос о возможности или невозможности самозарождения жизни. Эту премию получил в 1862 г. знаменитый французский химик и микробиолог Луи Пастер. Так же как Спаланцани, он прокипятил питательный бульон в стеклянной колбе, но колба была не обычная, а с горлышком в виде 5-образной трубки. Воздух, а следовательно и «жизненная сила», могли проникать в колбу, но пыль, а вместе с нею и микроорганизмы, присутствующие в воздухе, оседали в нижнем колене 5-образной трубки, и бульон в колбе оставался стерильным (рис. 1). Однако стоило сломать горло колбы или ополоснуть стерильным бульоном нижнее колено 5-образной трубки, как бульон начинал быстро мутнеть — в нем появлялись микроорганизмы.

Таким образом, благодаря работам Луи Пастера теория самозарождения была признана несостоятельной и в научном мире утвердилась теория биогенеза, краткая формулировка которой — «все живое — от живого».

Рис. 1. Пастеровская колба

Однако, если все живые организмы в исторически обозримый период развития человечества происходят только от других живых организмов, естественно возникает вопрос: когда и каким образом появились на Земле первые живые организмы?

Теория креационизма

Теория креационизма предполагает, что все живые организмы (либо только простейшие их формы) были в определенный период времени сотворены («сконструированы») неким сверхъестественным существом (божеством, абсолютной идеей, сверхразумом, сверхцивилизацией и т.п.). Очевидно, что именно этой точки зрения с глубокой древности придерживались последователи большинства ведущих религий мира, в частности христианской религии.

Теория креационизма и в настоящее время достаточно широко распространена, причем не только в религиозных, но и в научных кругах. Обычно ее используют для объяснения наиболее сложных, не имеющих на сегодняшний день решения вопросов биохимической и биологической эволюции, связанных с возникновением белков и нуклеиновых кислот, формированием механизма взаимодействия между ними, возникновением и формированием отдельных сложных органелл или органов (таких, как рибосома, глаз или мозг). Актами периодическою «сотворения» объясняется и отсутствие четких переходных звеньев от одного типа животных
к другому, например от червей к членистоногим, от обезьяны к человеку и т.п. Необходимо подчеркнуть, что философский спор о первичности сознания (сверхразума, абсолютной идеи, божества) либо материи принципиально не разрешим, однако, поскольку попытка объяснить любые трудности современной биохимии и эволюционной теории принципиально непостижимыми сверхъестественными актами творения выводит эти вопросы за рамки научных исследований, теорию креационизма нельзя отнести к разряду научных теорий происхождения жизни на Земле.

Теории стационарного состояния и панспермии

Обе эти теории представляют собой взаимодополняющие элементы единой картины мира, сущность которой заключается в следующем: вселенная существует вечно и в ней вечно существует жизнь (стационарное состояние). Жизнь переносится с планеты на планету путешествующими в космическом пространстве «семенами жизни», которые могут входить в состав комет и метеоритов (панспермия). Подобных взглядов на происхождение жизни придерживался, в частности, основоположник учения о биосфере академик В.И. Вернадский.

Однако теория стационарного состояния, предполагающая бесконечно долгое существование вселенной, не согласуется с данными современной астрофизики, согласно которым вселенная возникла сравнительно недавно (около 16 млрд лет т.н.) путем первичного взрыва.

Очевидно, что обе теории (панспермии и стационарного состояния) вообще не предлагают объяснения механизма первичного возникновения жизни, перенося его на другие планеты (панспермия) либо отодвигая по времени в бесконечность (теория стационарного состояния).

Теория биохимической эволюции (теория А.И. Опарина)

Из всех теорий происхождения жизни наиболее распространенной и признанной в научном мире является теория биохимической эволюции, предложенная в 1924 г. советским биохимиком академиком А.И. Опариным (в 1936 г. он подробно изложил ее в своей книге «Возникновение жизни»).

Сущность этой теории состоит в том, что биологической эволюции — т.е. появлению, развитию и усложнению различных форм живых организмов, предшествовала химическая эволюция — длительный период в истории Земли, связанный с появлением, усложнением и совершенствованием взаимодействия между элементарными единицами, «кирпичиками», из которых состоит все живое — органическими молекулами.

Предбиологическая (химическая) эволюция

По мнению большинства ученых (в первую очередь астрономов и геологов), Земля сформировалась как небесное тело около 5 млрд лет т.н. путем конденсации частиц вращавшегося вокруг Солнца газопылевого облака.

Под влиянием сил сжатия частицы, из которых формируется Земля, выделяют огромное количество тепла. В недрах Земли начинаются термоядерные реакции. В результате Земля сильно разогревается. Таким образом, 5 млрд лет т.н. Земля представляла собой несущийся в космическом пространстве раскаленный шар, температура поверхности которою достигала 4000-8000°С (смеха. 2).

Постепенно, за счет излучения тепловой энергии в космическое пространство, Земля начинает остывать. Около 4 млрд лет т.н. Земля остывает настолько, что на ее поверхности формируется твердая кора; одновременно из ее недр вырываются легкие, газообразные вещества, поднимающиеся вверх и формирующие первичную атмосферу. По составу первичная атмосфера существенно отличалась от современной. Свободный кислород в атмосфере древней Земли, по-видимому, отсутствовал, а в ее состав входили вещества в восстановленном состоянии, такие, как водород (Н 2), метан (СН 4), аммиак (NH 3), пары воды (Н 2 О), а возможно, также азот (N 2), окись и двуокись углерода (СО и С0 2).

Восстановительный характер первичной атмосферы Земли чрезвычайно важен для зарождения жизни, поскольку вещества в восстановленном состоянии обладают высокой реакционной способностью и в определенных условиях способны взаимодействовать друг с другом, образуя органические молекулы. Отсутствие в атмосфере первичной Земли свободного кислорода (практически весь кислород Земли был связан в виде окислов) также является важной предпосылкой возникновения жизни, поскольку кислород легко окисляет и тем самым разрушает органические соединения. Поэтому при наличии в атмосфере свободного кислорода накопление на древней Земле значительного количества органических веществ было бы невозможно.

Около 5 млрд лет т.п. — возникновение Земли как небесного тела; температура поверхности — 4000-8000°С

Около 4 млрд лет т.н. - формирование земной коры и первичной атмосферы

При температуре 1000°С — в первичной атмосфере начинается синтез простых органических молекул

Энергию для синтеза дают:

Температура первичной атмосферы ниже 100°С — формирование первичного океана -

Синтез сложных органических молекул — биополимеров из простых органических молекул:

  • простые органические молекулы — мономеры
  • сложные органические молекулы — биополимеры

Схема. 2. Основные этапы химической эволюции

Когда температура первичной атмосферы достигает 1000°С, в ней начинается синтез простых органических молекул, таких, как аминокислоты, нуклеотиды, жирные кислоты, простые сахара, многоатомные спирты, органические кислоты и др. Энергию для синтеза поставляют грозовые разряды, вулканическая деятельность, жесткое космическое излучение и, наконец, ультрафиолетовое излучение Солнца, от которого Земля еще не защищена озоновым экраном, причем именно ультрафиолетовое излучение ученые считают основным источником энергии для абиогенного (т.е. проходящею без участия живых организмов) синтеза органических веществ.

Признанию и широкому распространению теории А.И. Опарина во многом способствовало то, что процессы абиогенного синтеза органических молекул легко воспроизводятся в модельных экспериментах.

Возможность синтеза органических веществ из неорганических была известна с начала 19 в. Уже в 1828 г. выдающийся немецкий химик Ф. Вёлер синтезировал органическое вещество — мочевину из неорганическою — циановокислого аммония. Однако возможность абиогенного синтеза органических веществ в условиях, близких к условиям древней Земли, была впервые показана в опыте С. Миллера.

В 1953 г. молодой американский исследователь, студент- дипломник Чикагского университета Стенли Миллер воспроизвел в стеклянной колбе с впаянными в нес электродами первичную атмосферу Земли, которая, по мнению ученых того времени, состояла из водорода метана СН 4 , аммиака NH, и паров воды Н 2 0 (рис. 3). Через эту газовую смесь С. Миллер в течение недели пропускал электрические разряды, имитирующие грозовые. По окончании эксперимента в колбе были обнаружены α-аминокислоты (глицин, аланин, аспарагин, глутамин), органические кислоты (янтарная, молочная, уксусная, гликоколовая), у-оксимасляная кислота и мочевина. При повторении опыта С. Миллеру удалось получить отдельные нуклеотиды и короткие полинуклеотидные цепочки из пяти-шести звеньев.

Рис. 3. Установка С. Миллера

В дальнейших опытах по абиогенному синтезу, проводимых различными исследователями, использовались не только электрические разряды, но и другие виды энергии, характерные для древней Земли, — космическое, ультрафиолетовое и радиоактивное излучения, высокие температуры, присущие вулканической деятельности, а также разнообразные варианты газовых смеси, имитирующих первичную атмосферу. В результате был получен практически весь спектр органических молекул, характерных для живого: аминокислоты, нуклеотиды, жироподобные вещества, простые сахара, органические кислоты.

Более того, абиогенный синтез органических молекул может происходить на Земле и в настоящее время (например, в процессе вулканической деятельности). При этом в вулканических выбросах можно обнаружить не только синильную кислоту HCN, являющуюся предшественником аминокислот и нуклеотидов, но и отдельные аминокислоты, нуклеотиды и даже такие сложные по строению органические вещества, как порфирины. Абиогенный синтез органических веществ возможен не только на Земле, но и в космическом пространстве. Простейшие аминокислоты обнаружены в составе метеоритов и комет.

Когда температура первичной атмосферы опустилась ниже 100°С, на Землю обрушились горячие дожди и появился первичный океан. С потоками дождя в первичный океан поступали абиогенно синтезированные органические вещества, что превратило его, но образному выражению английского биохимика Джона Холдейна, в разбавленный «первичный бульон». По-видимому, именно в первичном океане начинаются процессы образования из простых органических молекул — мономеров сложных органических молекул — биополимеров (см. рис. 2).

Однако процессы полимеризации отдельных нуклеогидов, аминокислот и Сахаров — это реакции конденсации, они протекают с отщеплением воды, следовательно, водная среда способствует не полимеризации, а, напротив, гидролизу биополимеров (т.е. разрушению их с присоединением воды).

Образование биополимеров (в частности, белков из аминокислот) могло происходить в атмосфере при температуре около 180°С, откуда они смывались в первичный океан с атмосферными осадками. Кроме того, возможно, на древней Земле аминокислоты концентрировались в пересыхающих водоемах и полимеризовались в сухом виде под действием ультрафиолетового света и тепла лавовых потоков.

Несмотря на то что вода способствует гидролизу биополимеров, в живой клетке синтез биополимеров осуществляется именно в водной среде. Этот процесс катализируют особые белки-катализаторы — ферменты, а необходимая для синтеза энергия выделяется при распаде аденозинтрифосфорной кислоты — АТФ. Возможно, синтез биополимеров в водной среде первичного океана катализировался поверхностью некоторых минералов. Экспериментально показано, что раствор аминокислоты аланина может полимеризоваться в водной среде в присутствии особого вида глинозема. При этом образуется пептид полиаланин. Реакция полимеризации аланина сопровождается распадом АТФ.

Полимеризация нуклеотидов проходит легче, чем полимеризация аминокислот. Показано, что в растворах с высокой концентрацией солей отдельные нуклеотиды самопроизвольно полимеризуются, превращаясь в нуклеиновые кислоты.

Жизнь всех современных живых существ — это процесс непрерывного взаимодействия важнейших биополимеров живой клетки — белков и нуклеиновых кислот.

Белки — это «молекулы-рабочие», «молекулы-инженеры» живой клетки. Характеризуя их роль в обмене веществ, биохимики часто используют такие образные выражения, как «белок работает», «фермент ведет реакцию». Важнейшая функция белков- каталитическая . Как известно, катализаторы — это вещества, которые ускоряют химические реакции, но сами в конечные продукты реакции не входят. Бачки-катализаторы называются ферментами. Ферменты в согни и тысячи раз ускоряют реакции обмена веществ. Обмен веществ, а значит, и жизнь без них невозможны.

Нуклеиновые кислоты — это «молекулы-компьютеры», молекулы — хранители наследственной информации. Нуклеиновые кислоты хранят информацию не обо всех веществах живой клетки, а только о белках. Достаточно воспроизвести в дочерней клетке белки, свойственные материнской клетке, чтобы они точно воссоздали все химические и структурные особенности материнской клетки, а также свойственный ей характер и темпы обмена веществ. Сами нуклеиновые кислоты также воспроизводятся благодаря каталитической активности белков.

Таким образом, тайна зарождения жизни — это тайна возникновения механизма взаимодействия белков и нуклеиновых кислот. Какими же сведениями об этом процессе располагает современная наука? Какие молекулы явились первичной основой жизни — белки или нуклеиновые кислоты?

Ученые полагают, что несмотря на ключевую роль белков в обмене веществ современных живых организмов, первыми «живыми» молекулами были не белки, а нуклеиновые кислоты, а именно рибонуклеиновые кислоты (РНК).

В 1982 г. американский биохимик Томас Чек открыл автокаталитические свойства РНК. Он экспериментально показал, что в среде, содержащей в высокой концентрации минеральные соли, рибонуклеотиды спонтанно (самопроизвольно) полимеризуются, образуя полинуклеотиды — молекулы РНК. На исходных полинуклеотидных цепях РНК, как на матрице, путем спаривания комплементарных азотистых оснований образуются РНК-копии. Реакция матричного копирования РНК катализируется исходной молекулой РНК и не требует участия ферментов либо других белков.

Дальнейшие события достаточно хорошо объясняются процессом, который можно было бы назвать «естественным отбором» на уровне молекул. При самокопировании (самосборке) молекул РНК неизбежно возникают неточности, ошибки. Содержащие ошибки копии РНК снова копируются. При повторном копировании вновь могут возникнуть ошибки. В результате популяция молекул РНК на определенном участке первичного океана будет неоднородна.

Поскольку параллельно с процессами синтеза идут и процессы распада РНК, в реакционной среде будут накапливаться молекулы, обладающие либо большей стабильностью, либо лучшими автокаталитическими свойствами (т.е. молекулы, которые быстрее себя копируют, быстрее «размножаются»).

На некоторых молекулах РНК, как на матрице, может происходить самосборка небольших белковых фрагментов — пептидов. Вокруг молекулы РНК образуется белковый «чехол».

Наряду с автокаталитическими функциями Томас Чек обнаружил у молекул РНК и явление самосплайсинга. В результате самосплайсинга участки РНК, не защищенные пептидами, самопроизвольно удаляются из РНК (они как бы «вырезаются» и «выбрасываются»), а оставшиеся участки РНК, кодирующие белковые фрагменты, «срастаются», т.е. самопроизвольно объединяются в единую молекулу. Эта новая молекула РНК уже будет кодировать большой сложный белок (рис. 4).

По-видимому, первоначально белковые чехлы выполняли в первую очередь, защитную функцию, предохраняя РНК от разрушения и повышая тем самым ее стабильность в растворе (такова функция белковых чехлов и у простейших современных вирусов).

Очевидно, что на определенном этапе биохимической эволюции преимущество получили молекулы РНК, кодирующие не только защитные белки, но и белки-катализаторы (ферменты), резко ускоряющие скорость копирования РНК. По-видимому, именно таким образом и возник процесс взаимодействия белков и нуклеиновых кислот, который мы в настоящее время называем жизнью.

В процессе дальнейшего развития, благодаря появлению белка с функциями фермента — обратной транскриптазы, на одно- цепочечных молекулах РНК стали синтезироваться состоящие из двух цепей молекулы дезоксирибонуклеиновой кислоты (ДНК). Отсутствие у дезоксирибозы ОН-группы в 2" положении делает молекулы ДНК более стабильными по отношению к гидролитическому расщеплению в слабощелочных растворах, а именно слабощелочной была реакция среды в первичных водоемах (эта реакция среды сохранилась и в цитоплазме современных клеток).

Где же происходило развитие сложного процесса взаимодействия белков и нуклеиновых кислот? По теории А.И. Опарина, местом зарождения жизни стали так называемые коацерватные капли.

Рис. 4. Гипотеза возникновения взаимодействия белков и нуклеиновых кислот: а) в процессе самокопирования РНК накапливаются ошибки (1 — нуклеотиды, соответствующие исходной РНК; 2 — нуклеотиды, не соответствующие исходной РНК, — ошибки в копировании); б) на часть молекулы РНК за счет ее физико-химических свойств «налипают» аминокислоты (3 — молекула РНК; 4 — аминокислоты), которые, взаимодействуя друг с другом, превращаются в короткие белковые молекулы — пептиды. В результате свойственного молекулам РНК самосплайсинга незащищенные пептидами участки молекулы РНК разрушаются, а оставшиеся «срастаются» в единую молекулу, кодирующую крупный белок. В результате возникает молекула РНК, покрытая белковым чехлом (сходное строение имеют и наиболее примитивные современные вирусы, например вирус табачной мозаики)

Явление коацервации состоит в том, что в некоторых условиях (например, в присутствии электролитов) высокомолекулярные вещества отделяются от раствора, но не в форме осадка, а в виде более кон центрирован но го раствора — коацервата. При встряхивании коацерват распадается на отдельные мелкие капельки. В воде такие капли покрываются стабилизирующей их гидратной оболочкой (оболочкой из молекул воды) — рис. 5.

Коацерватные капли обладают некоторым подобием обмена веществ: иод воздействием чисто физико-химических сил они могут избирательно впитывать из раствора некоторые вещества и выделять в окружающую среду продукты их распада. За счет избирательного концентрирования веществ из окружающей среды они могут расти, а но достижении определенного размера начинают «размножаться», отпочковывая маленькие капельки, которые, в свою очередь, могут расти и «почковаться».

Возникшие в результате концентрирования белковых растворов коацерватные капли в процессе перемешивания под действием волн и ветра могут покрываться оболочкой из липи- дов: одинарной, напоминающей мицеллы мыла (при однократном отрыве капли от поверхности воды, покрытой липидным слоем), либо двойной, напоминающей клеточную мембрану (при повторном падении капли, покрытой однослойной липидной мембраной, на липидную пленку, покрывающую поверхность водоема — рис. 5).

Процессы возникновения коацерватных капель, их роста и «почкования», а также «одевания» их мембраной из двойного липидного слоя легко моделируются в лабораторных условиях.

Для коацерватных капель также существует процесс «естественного отбора», при котором в растворе сохраняются наиболее стабильные капли.

Несмотря на внешнее сходство коацерватных капель с живыми клетками, у коацерватных капель отсутствует главный признак живого — способность к точному самовоспроизведению, самокопированию. Очевидно, предшественниками живых клеток явились такие коацерватные капли, в состав которых вошли комплексы молекул-репликаторов (РНК или ДНК) и кодируемых ими белков. Возможно, комплексы РНК-белок длительное время существовали вне коацерватных капель в виде так называемого «свободноживущего гена», а возможно, их формирование проходило непосредственно внутри некоторых коацерватных капель.

Возможный путь перехода от коацерватных капель к примитивным клешам:

а) образование коацервата; 6) стабилизация коацерватных капель в водном растворе; в) — формирование вокруг капли двойного липидного слоя, похожего на клеточную мембрану: 1 — коацерватная капля; 2 — мономолекулярный слой липида на поверхности водоема; 3 — формирование вокруг капли одинарного липидного слоя; 4 — формирование вокруг капли двойного липидного слоя, похожего на клеточную мембрану; г) — коацерватная капля, окруженная двойным липидным слоем, с вошедшим в ее состав белково-нуклеотидным комплексом — прообраз первой живой клетки

Исключительно сложный, не до конца понятный современной науке процесс возникновения жизни на Земле прошел с исторической точки зрения чрезвычайно быстро. Уже 3,5 млрд лет т.н. химическая эволюция завершилась появлением первых живых клеток и началась биологическая эволюция.